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Abstract

Multilevel network data provide two important benefits for ERG model-
ing. First, they facilitate estimation of the decay parameters in geometrically
weighted terms for degree and triad distributions. Estimating decay parame-
ters from a single network is challenging, so in practice they are typically fixed
rather than estimated. Multilevel network data overcome that challenge by
leveraging replication. Second, such data make it possible to assess out-of-
sample performance using traditional cross-validation techniques. We demon-
strate these benefits by using a multilevel network sample of classroom net-
works from Poland. We show that estimating the decay parameters improves
in-sample performance of the model and that the out-of-sample performance
of our best model is strong, suggesting that our findings can be generalized to
the population of interest.
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1 Introduction

Exponential-family random graph models (ERGMs) or p?-models (Wasserman & Pat-
tison, 1996) have become one of the dominant statistical methods for analyzing social
networks (Wasserman & Faust, 1994; Kolaczyk, 2009), as evidenced by a growing
body of research articles, books (Lusher et al., 2013; Harris, 2013), and software.1

When properly specified, ERGMs can be used to investigate a wide range of network
processes, both dyadic independent (e.g., degree heterogeneity and homophily by
nodal attributes) and dyadic dependent (e.g., cyclical and transitive triadic closure).

Triadic processes, in particular, have long been of interest in social network analy-
sis (Heider, 1946; Cartwright & Harary, 1956; Wasserman & Faust, 1994). Early stud-
ies used methods from mathematical graph theory to examine the relative frequencies
of triadic configurations (see, e.g., the so-called triad census of Holland & Leinhardt,
1970). That work led to some of the foundational theories of social network analysis:
that regularities in triadic configurations at the micro-level cumulate up to signature
patterns at the macro-level, such as clustering and polarization (Rapoport, 1963).
So when the first statistical models with dyadic dependence induced by counts of
triadic configurations were proposed – the Markov random graphs of Frank & Strauss
(1986) – it was natural that applied research focused on model specifications that
used counts of triadic configurations to explain the clustering observed in empirical
networks. But those specifications turned out to be problematic. It took some time
to understand why, and to appreciate how (and how not) to represent dyadic depen-
dence induced by triadic processes in statistical models. Strauss (1986) first observed
that dyadic dependence induced by 2-star and triangle counts in combination with
strong homogeneity assumptions (Frank & Strauss, 1986) leads to near-degenerate
models, placing most probability mass on networks with almost no edges or almost
all possible edges (Jonasson, 1999; Handcock, 2003; Schweinberger, 2011; Butts, 2011;
Chatterjee & Diaconis, 2013).

That work led eventually to a better understanding of why the simple homogenous
Markov specifications do not behave as expected, and to the development of more
appropriate, parsimonious specifications of dyadic dependence in ERGMs. The most
widely used of the new specifications are curved terms such as alternating k-stars and
k-triangles (Snijders et al., 2006) or, equivalently, geometrically weighted degrees and
triads (Hunter & Handcock, 2006; Hunter, 2007; Hunter et al., 2008).

1The publicly available software for ERGMs includes 19 R packages found at CRAN.R-project.org
(in alphabetical order, Bergm, blkergm, btergm, dnr, EpiModel, ergm, ergm.count, ergm.ego,
ergm.graphlets, ergm.rank, ergm.userterms, ergmharris, fergm, GERGM, gwdegree, hergm,
statnetWeb, tergm, xergm), and the program pnet (Wang et al., 2006).
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1.1 Curved ERGMs with geometrically weighted terms

The promise of curved ERGMs with geometrically weighted terms was first demon-
strated in the papers of Snijders et al. (2006), Hunter & Handcock (2006), Hunter
(2007), and Hunter et al. (2008). Expressed in terms of sequences of degree and
shared partner counts, curved terms are weighted sums of those sequences, where the
weights decrease geometrically, as governed by a decay parameter. The homogenous
Markov random graph terms based on the k-star and triangle counts in Frank &
Strauss (1986) imply that each additional k-star and triangle configuration has the
same influence on the log odds of the conditional probability of an edge. By contrast,
the geometrically weighted terms imply declining marginal influence, where the rate
of decline is controlled by the decay parameter. This term is then multiplied by the
usual coefficient, which in this context is often called the “base parameter.” Geomet-
rically weighted terms give rise to curved exponential families of distributions in the
sense of Efron (1975), therefore such ERGMs are known as curved ERGMs (Hunter
& Handcock, 2006; Hunter, 2007). A growing body of applied research has demon-
strated the usefulness of these curved ERGMs (see, e.g., Lusher et al., 2013; Harris,
2013, and references therein). That said, some statistical challenges have emerged.

1.2 Statistical inference for curved ERGMs

While geometrically weighted terms are attractive on scientific grounds and better
behaved in practice, estimating the decay parameters of these terms from a single
network by maximum likelihood methods (Hunter & Handcock, 2006) or Bayesian
methods (Koskinen, 2004; Caimo & Friel, 2011; Everitt, 2012; Bomiriya et al., 2016)
has proven to be difficult.

The seminal paper of Snijders et al. (2006), which introduced alternating k-star
and k-triangle terms and a version of the geometrically weighted degree term, applied
a curved ERGM to the Lazega law firm advice network (Lazega, 2001). Snijders et al.
did not estimate the decay parameters, but fixed them at values found by trial and
error. Hunter & Handcock (2006) introduced Monte Carlo maximum likelihood meth-
ods to estimate decay parameters and were able to estimate the decay parameters of
some geometrically weighted model terms using the same law firm advice network,
but conditioned on the observed number of edges (as did Obando & De Vico Fal-
lani, 2017). We were only able to find four published papers that estimated decay
parameters of geometrically weighted model terms without conditioning on the ob-
served number of edges (Hunter, 2007; Koskinen et al., 2010; Suesse, 2012; Almquist
& Bagozzi, 2015). Three of them used the same network, the Lazega law firm advice
network (Hunter, 2007; Koskinen et al., 2010; Suesse, 2012).

Both of the heuristic approaches to using curved ERGMs in practice – fixing the
decay parameters at values found by trial and error or conditioning on the observed
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number of edges – are undesirable. Fixing decay parameters at values other than the
maximum likelihood estimates (MLEs) will change the estimates for all of the other
model parameters, and can negatively affect both the in-sample and the out-of-sample
performance of the model. Conditioning on the number of edges in the observed
network also imposes a steep cost, as it limits statistical inference to networks with
the same number of edges.

One reason that the estimation of the decay parameter is so challenging is that
geometrically weighted terms are nonlinear functions of the product of the base and
decay parameters (Hunter, 2007). As such, these two parameters are “mixed up,”
and difficult to estimate. In theory, estimation of both parameters is possible: well-
specified models are identifiable and sensitive to changes in all parameters as long
as the base parameters are not zero and the network contains at least four nodes.
However, even well-specified models are less sensitive to changes in decay parameters
when the base parameters are small or the decay parameters are large. As a conse-
quence, a network may not contain much information about decay parameters (in the
statistical sense of Fisher information), making it challenging to estimate them.

1.3 Multilevel network data facilitate statistical inference for
curved ERGMs

The increasing availability of multilevel network data (e.g., Wang et al., 2013; Zappa
& Lomi, 2015; Lomi et al., 2016; Slaughter & Koehly, 2016; Hollway & Koskinen,
2016; Lazega & Snijders, 2016; Hollway et al., 2017) provides new opportunities to
strengthen statistical inference for curved ERGMs. Multilevel network data come in
many forms. Snijders (2016) presents a representative sample of the diverse forms that
multilevel network structure can assume. Among the multitude of multilevel network
structures, two basic forms of multilevel networks can be distinguished: multiple
networks (e.g., multiple school networks) and multilevel networks with ties within and
between two sets of nodes (e.g., a set of students and a set of school classes in a school).
We consider here a simple example that combines both flavors of multilevel networks:
we have multiple school networks and, within each school, we have students (level-1
units) nested in school classes (level-2 units), with ties among students within and
between school classes—although in the multilevel network we will use the between-
class ties are unobserved by the data collection design. Such data can be used to
strengthen statistical inference for curved ERGMs in at least three ways.

First, multilevel networks help estimate decay parameters of geometrically weighted
terms by providing replication. In the running example, if we assume that the net-
work in each school class is generated by a curved ERGM with a size-adjusted pa-
rameterization (Krivitsky et al., 2011; Krivitsky & Kolaczyk, 2015), then the sample
of networks comprises replications from the same data-generating process. The repli-
cation provides additional information (in the statistical sense of Fisher information)
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that improves estimation of all of the parameters in a model. Recent advances in the
statistical theory of ERGMs have shown that the MLEs of parameters, including the
decay parameters of geometrically weighted terms, exist and are close to the data-
generating values of the parameters with high probability, provided a large multilevel
network consists of many networks of similar sizes (Schweinberger & Stewart, 2018).
In practice, estimation from multilevel networks can reduce standard errors of max-
imum likelihood estimators and the posterior uncertainty in Bayesian approaches to
ERGMs (Koskinen, 2004; Caimo & Friel, 2011; Everitt, 2012; Bomiriya et al., 2016).

Second, multilevel networks can have computational advantages. This is especially
true in our running example, where the edges within school classes do not depend
on edges outside of school classes. In this case, the probability mass function of
a multilevel network factorizes into class-dependent probability mass functions. The
factorization implies that the within- and between-class contributions to the likelihood
function can be computed separately, which allows them to be performed in parallel
on multi-core computers or computing clusters.

Third, multilevel networks make it possible to assess the out-of-sample perfor-
mance of ERGMs via cross-validation: the replicates can be split into two subsets, a
training subset used to estimate the model, and a held-out subset used to assess the
out-of-sample performance of the estimated model. It is worth noting that the as-
sessment of out-of-sample performance serves a different purpose than the traditional
assessment of goodness-of-fit (Hunter et al., 2008). Goodness-of-fit checks assess
in-sample performance: how well an estimated model reproduces other features of
the same observed network that was used to estimate the model. By contrast, cross-
validation assesses out-of-sample performance: how well the estimated model predicts
features of networks that were not used to estimate the model. As a consequence,
cross-validation helps strengthen the basis for sample-to-population inference.

1.4 Purpose of our paper

We demonstrate the advantages outlined in Section 1.3 by estimating a set of curved
ERGMs from a multilevel network consisting of 304 third-grade school classes with
6,594 students, sampled from a population with 309,285 third-grade students in
Poland (Dolata, 2014). Our primary focus is on geometrically weighted triadic closure
terms for directed networks (Butts, 2008; Robins et al., 2009). We compare the results
from a model that fixes the decay parameter at two values (0 and .25) commonly used
in practice (e.g., Hunter et al., 2008; Goodreau et al., 2009; Hunter et al., 2012), to the
results from the same model when the decay parameter is estimated. In addition, we
explore four other alternative specifications of directed geometrically weighted triadic
closure terms, capturing different forms of cyclical and transitive closure (Wasserman
& Faust, 1994). All of the models use size-adjusted parameterizations for the density
and reciprocity terms (Krivitsky et al., 2011; Krivitsky & Kolaczyk, 2015; Butts &
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Almquist, 2015). We assess the performance of the models in three ways: convergence
properties, in-sample performance (goodness-of-fit), and out-of-sample performance
(cross-validation).

Our findings show that the convergence properties of all curved ERGMs are ex-
cellent, and that the in-sample performance of curved ERGMs is superior when de-
cay parameters are estimated rather than fixed. In addition, the best-fitting curved
ERGM shows strong out-of-sample performance, which suggests that our findings can
be generalized to the population interest.

A software implementation of the proposed models and methods is available in the
R package hergm (Schweinberger & Luna, 2018), which depends on R package ergm

(Hunter et al., 2008). The package supports parallel computing on multi-processor
computers and computing clusters.

1.5 Comparison with existing approaches

There is a growing body of research articles and books concerned with multilevel
network data, models, and methods (e.g., Wang et al., 2013; Zappa & Lomi, 2015;
Lomi et al., 2016; Slaughter & Koehly, 2016; Hollway & Koskinen, 2016; Lazega &
Snijders, 2016; Hollway et al., 2017). For the type of multilevel network considered
here, existing approaches include

• pooling the network data and estimating a common model, without adjusting
for network size (e.g., Kalish & Luria, 2013). That assumes that the coefficients
are the same for all networks and ignores the potential impact of network size.

• estimating a model from each network separately (e.g., Hunter et al., 2008;
Goodreau et al., 2009). That allows coefficients to vary from network to net-
work, but does not pool information across networks to facilitate the estimation
of the decay parameters of curved ERGMs. While the separate estimates can be
combined into a single estimate by using meta-analysis (Lubbers, 2003; Lubbers
& Snijders, 2007), estimating decay parameters from each network separately
does not pool information across networks and is challenging for the reasons
discussed above (Section 1.2).

• Bayesian approaches (e.g., Schweinberger & Handcock, 2015; Slaughter & Koehly,
2016) that assume the coefficients are random variables with common mean and
variance. While flexible, existing Bayesian methods are associated with high
computational costs.

None of these existing approaches have dealt with the problem of missing data.
By contrast, we
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• pool the network data and estimate a common model, adjusting for network
size by using methods proposed by Krivitsky et al. (2011) and Krivitsky &
Kolaczyk (2015): that is, we assume that coefficients are functions of size-
invariant parameters and size-dependent offsets.

• exploit the strength of the pooled network data to estimate the decay parameters
of curved ERGMs, and increase the precision of other estimators, while keeping
the model parsimonious and computations feasible for networks with thousands
of nodes.

• distinguish between the process that generates the population network and the
process that determines which network data are observed (Schweinberger et al.,
2017).

• incorporate modern missing-data methods for statistical network analysis, as-
suming that missing responses are ignorable as defined by Handcock & Gile
(2010) and Koskinen et al. (2010).

• use out-of-sample prediction assessment to assess sample-to-population infer-
ence.

• provide a careful substantive interpretation of the key coefficients in these curved
ERGMs.

To compare our work to the only four papers that estimated decay parameters
without conditioning on the observed number of edges (Hunter, 2007; Koskinen et al.,
2010; Suesse, 2012; Almquist & Bagozzi, 2015), we note that all of them focus on a
single triadic closure term (GW-ESP) for undirected networks, are based on a single
network without sampled or missing data, one network with 36 nodes (Hunter, 2007;
Koskinen et al., 2010; Suesse, 2012) and the other network with 143 nodes (Almquist
& Bagozzi, 2015). By contrast, we estimate the decay parameters of five triadic
closure terms for directed networks on a sample of networks with missing data, and
use out-of-sample performance assessment to justify inference to the population of
third-grade class networks in Poland.

The remainder of our paper is structured as follows. We describe the population
network of interest and the sampled network data in Section 2. A population network
model is introduced in Section 3 and likelihood-based inference for the population
network model is discussed in Section 4. We present the results in Section 5.
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2 Population network and sampled network data

The data we use are sampled multilevel network data collected by the Polish Institute
for Educational Research2 as a part of the study “Quality and Efficiency of Education
and Institutionalization of Research Facilities” (Dolata & Rycielski, 2014).

The population consists of all third-grade classes in 8,924 Polish primary schools
during academic year 2010/2011. A total of 309,285 students attended third grade
that year. A two-stage sampling design was used to generate a sample of school classes
from the population. In the first stage, a stratified sample of 176 schools was gener-
ated, with strata defined by city size and the number of third-grade school classes.
More details on the stratified cluster sampling design can be found in Maluchnik &
Modzelewski (2014). In the second stage, 306 third-grade school classes were sampled
from the 176 schools. If the school had one or two third-grade school classes, all were
included. If the school had three or more third-grade school classes, two were selected
by simple random sampling without replacement.

The study sought to interview all 6,607 students in the sampled school classes by
in-class surveys, however parental consent was required for students to participate
(Maluchnik & Modzelewski, 2014). Interview data were collected from 5,625 students
(85%). The data from the remaining students are missing due to a combination
of missing parental consent, absence on the day of the survey, and inadmissible or
garbled responses. Participating students could still nominate students who did not
participate, so the data set contains information on more students than participants.
We removed the two smallest classes with 6 and 7 students because of the small sizes.
The resulting data set used in this analysis is based on 5,612 interviews from 304
sampled school classes and provides information on 6,594 students.

Figure 1 shows the distribution of the sizes of the 304 sampled school classes and
the percentages of students with missing data in each class. Class sizes range from
11 to 33, with a median of 22. Missingness ranges from 0 to 45%, with a median of
13%. There are 44 school classes (14%) without missing data.

The network data consist of directed edges from student i to student j, where a
directed edge indicates that student i expressed interest in playing with student j.
The name generator was: “Name people from your class that you would most like to
play with” (translated from Polish). Nominations were restricted to other students in
the same school class, so the data do not contain observations of between-class edges.
In addition to the network data, two nodal attributes were collected from school
records: the sex of students and the International Socio-Economic Index (ISEI) of
parents. Due to high levels of missingness, we do not use the ISEI of parents in our
analyses.

The observed outdegree distribution is shown in Figure 2 and reveals a notable
spike at 5. While there was no upper bound on the number of nominations allowed,

2Instytut Badań Edukacyjnych, www.ibe.edu.pl.
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Figure 1: Left: Size distribution of sizes of the 304 school classes. Right: Distribution
of the percentage of students with missing data in each school. The vertical bar at 0
shows the 44 school classes without missing data.
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Figure 2: Observed outdegrees of students in the 304 school classes.

the questionnaire provided 5 lines for nominating playmates. It seems likely that
some students interpreted the 5 lines as a limit on the number of nominations, while
others did not. This has implications for modeling outdegrees, which we discuss in
Section 3.2.

The mean outdegree and indegree of male students, computed from the 44 classes
without missing data, are 4.61 and 4.83, respectively; for female students, the mean
outdegree and indegree are 5.28 and 5.04, respectively. Table 1 shows the distribution
of nominations by female and male students, based on the 44 classes without missing
data.

3 Population network model

The true population of interest consists of all students in third-grade school classes
in Poland. In this population, there may be edges both within and between school

9



Receiver Total

Male Female Ties Students

Sender
Male 1782 333 2115 459

Female 437 1921 2358 447

Total
Ties 2219 2254 4473

Students 459 447 906

Table 1: Distribution of nominations by female and male students. The counts
are the total number of edges in each category across the 44 school classes without
missing data.

classes, and both may be of scientific interest. The modeling framework we present
here is capable of modeling both within- and between-class edges, provided data on
both are available. To clarify which assumptions our model makes and under which
conditions our model-based conclusions hold, we specify the general form here. When
we turn to our application, the lack of data on between-class edges will constrain the
model specification to a more limited form.

Let Xi,j = 1 if student i expressed interest in playing with student j and let Xi,j =
0 otherwise, and denote by Ak the set of all students in school class k = 1, . . . , K. We
denote the within-class networks by Xk = (Xi,j)i∈Ak, j∈Ak

, the between-class networks
by Xk,l = (Xi,j)i∈Ak, j∈Al

(k 6= l), and the population network by X = (Xk,l)
K
k,l.

We assume that the population network X was generated by a random graph
model with a probability mass function of the form

P(X = x) =

[
K∏
k=1

P(Xk = xk)

]
P(Xk,l = xk,l, k 6= l = 1, . . . , K).

The population network model therefore makes two fundamental model assumptions:

• The within-class edges of students can depend on other edges among students
in the same school class, but do not depend on edges to students outside of the
school class.

• The between-class edges of students can depend on other between-class edges,
but do not depend on within-class edges.

While the lack of data on between-class edges means that we cannot learn the proba-
bility law governing between-class edges (unless we make the unrealistic assumption
that within- and between-class edges are governed by the same probability law), we
can use our model to learn the probability law governing the within-class networks of
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the population network. In particular, we can use our model to examine whether play-
ing preferences in the population of third-grade students in Poland show evidence of
reciprocity, heterogeneity and homophily by sex, and triadic closure of different types
(Wasserman & Faust, 1994).

3.1 Model specification

We focus here on the specification of within-class models, since we do not have data
on between-class edges.

We assume that the within-class models are ERGMs with probability mass func-
tions of the form

Pθ(Xk = xk) = exp

(
p∑
i=1

ηk,i(θ) sk,i(xk)− ψk(θ)

)
, k = 1, . . . , K,

where sk,i : Xk 7→ R are network features of within-class network xk ∈ Xk and
ηk,i : Θ 7→ R are the weights of the network features, called the natural parameters of
the exponential family. The natural parameters ηk,i : Θ 7→ R may depend on the sizes
of school classes and may be non-linear functions of a parameter vector θ ∈ Θ ⊆ Rq,
which is the case in curved ERGMs with geometrically weighted terms. The function
ψk(θ) ensures that the probability mass function Pθ(Xk = xk) sums to 1.

We start with a description of size-adjusted parameterizations for edges and mu-
tual edges in Section 3.2 and discuss modeling outdegrees in Section 3.3. We then turn
to the model terms of primary interest: heterogeneity and homophily by sex terms
in Section 3.4 and triadic closure terms in Section 3.5, based on curved ERGMs with
geometrically weighted terms. A graphical summary of all model terms is shown in
Figures 4 and 5 below.

3.2 Size-adjusted parameterizations

The sizes of the sampled school classes described in Section 2 range from 11 to 33.
If network density changes with network size, this has implications for model speci-
fication. The issue is related to density-dependence versus frequency-dependence in
the ecology literature (e.g., DeBenedictis, 1977), and sparse versus dense graphs in
mathematical graph limit theory (e.g., Chatterjee & Diaconis, 2013).

Consider an undirected Bernoulli random graph, which is equivalent to an ERGM
with the number of edges as sufficient statistic and natural parameter η(θ) = θ. Here,
θ is the log odds of the probability of an edge. Holding θ constant as the network size
increases preserves the probability of an edge – i.e., the expected network density –
but increases the expected degrees of nodes by a factor proportional to the change in
network size. Thus, increasing network size by a factor of 10 would result in nodes
having, on average, 10 times more edges. That is equivalent to the density-dependence

11



●●

●●●●

●

●

●●

●

●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●●●●

●

●

●

●●

●●

●

●●●●

●

●

●

●

●●●

●

●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

0

5

10

15

20

25

11 13 15 17 19 21 23 25 27 29 31 33
Size of class

O
ut

de
gr

ee
s

●

●

●

●●

●

●

●

●

●

●

●

0

3

6

9

11 13 15 17 19 21 23 25 27 29 31 33
Size of class

N
um

be
r 

of
 r

ec
ip

ro
ca

te
d 

ed
ge

s
Figure 3: Left: Boxplots of the observed outdegrees of students in the 304 school
classes. Right: Boxplots of the observed number of reciprocated edges in the 44 school
classes without missing data.

assumption in the ecology literature, and the dense-graph regime in graph limit theory
(Lovász, 2012).

Constant expected network density may be a reasonable assumption for the growth
process in some non-social networks, and some of the mathematical-statistical work
on ERGMs makes this assumption (e.g., Chatterjee & Diaconis, 2013). In the social
science literature, however, it has long been recognized that constant network density
is an unrealistic assumption for most social networks (Mayhew & Levinger, 1976).
People do not have infinite resources for engaging with others and it is therefore more
credible that, as the network size increases, the expected degrees of nodes are either
constant or bounded above (Krivitsky et al., 2011; Krivitsky & Kolaczyk, 2015; Butts
& Almquist, 2015). That is equivalent to the frequency-dependence assumption in the
ecology literature and the sparse-graph regime in graph limit theory (Lovász, 2012).

As shown in Figure 3, our data are consistent with the assumption that the ex-
pected degrees are either constant or bounded above: the median observed outdegree
lies between 4 and 5 for sampled school classes of all sizes. That may partly reflect
the fact that the questionnaire, while not limiting nominations, provided 5 lines, as
discussed in Section 2. However, the outdegrees of the students who made more than
5 nominations do not appear to increase with network size either, suggesting that the
expected degrees of all students are network size-invariant.

There is a small but growing body of work focused on developing size-invariant
parameterizations for ERGMs (Krivitsky et al., 2011; Krivitsky & Kolaczyk, 2015;
Butts & Almquist, 2015). The assumption that the expected mean degree, rather
than the expected network density, should be size-invariant leads to a per capita
scaling adjustment, where the expected number of edges scales linearly, rather than
quadratically, with the number of nodes. As proposed in Krivitsky et al. (2011),
ERGMs can achieve size-invariance of expected mean degree by including a size-
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dependent offset. In the undirected Bernoulli random graph model, for example,
the size-adjusted specification includes a size-dependent offset of − log |A|, where |A|
denotes the number of nodes in A:

η1(θ) = θ1 − log |A|. (1)

Here, θ1 ∈ R is a size-invariant parameter that does not depend on the size of A.
Krivitsky et al. (2011) showed that for Bernoulli random graphs with parameteriza-
tions of the form (1), the expected mean degree is constant in the limit as the number
of nodes increases without bound, and that the size-invariant parameter exp(θ1) can
be interpreted as the limiting expected mean degree. This simple interpretation of
exp(θ1) in terms of expected mean degree will change once other terms are added to
the model, but the size-invariance of the expected mean degree will still be preserved.
Krivitsky et al. (2011) showed that the size-dependent offset − log |A| provides per
capita scaling for all dyadic independence terms, including degree heterogeneity and
homophily by nodal attributes.

In directed networks, a natural hypothesis is that a constant fraction of edges
will be reciprocated. This implies the number of mutual edges will scale with the
number of edges rather than the number of possible edges, and the expected number
of reciprocated edges per student should not increase with network size. Again,
our data are consistent with this invariance assumption. Figure 3 shows the observed
number of mutual edges in the 44 school classes without missing data does not increase
with class size.

If a mutual edge term with a size-invariant natural parameter is added to a model
to capture the reciprocity effect, along with an edge term with a size-dependent
natural parameter of the form (1), then the penalty imposed by the size-dependent
offset − log |A| implies that the reciprocity effect vanishes in the limit as the number
of nodes increases without bound (Krivitsky & Kolaczyk, 2015). To prevent this,
Krivitsky & Kolaczyk proposed to adjust the natural parameter of the mutual edge
term by adding the size-dependent offset log |A| in order to cancel the penalty:

η2(θ) = θ2 + log |A|,

where θ2 ∈ R is the size-invariant reciprocity parameter. A model with size-adjusted
edge and mutual edge terms implies that the log odds of the conditional probability
of Xi,j = 1 given the rest of the network X−(i,j) = x−(i,j) has the form:

log
P(Xi,j = 1 | X−(i,j) = x−(i,j))

P(Xi,j = 0 | X−(i,j) = x−(i,j))
=

θ1 − log |A| if Xj,i = 0

θ1 + θ2 if Xj,i = 1,

where X−(i,j) refers to the network X excluding Xi,j.
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We use such size-adjusted edge and mutual edge terms in our network population
model, with log |Ak| for each of the school classes Ak. Note that we are here not
interested in the asymptotic properties of size-adjusted parameterizations – such as
the asymptotic mean degree – and that the asymptotic properties can change when
dyadic dependence terms are added to the model. We are concerned with small school
classes with 11 to 33 students, so asymptotic properties based on school classes with
infinite numbers of students are neither interesting nor relevant. We use size-adjusted
parameterizations to allow school classes of different sizes to have different edge and
mutual edge coefficients.

3.3 Outdegree terms

We noted in Section 2 that the observed outdegree distribution shows a sharp spike
at 5, which is likely to be an artifact of the questionnaire design. The spike is not
captured by conventional approaches to modeling outdegrees: the traditional edge
count term produces a Poisson-like distribution without a spike, and a geometrically
weighted outdegree term does not reproduce the observed distribution either. We
explored both approaches and found that neither of them captures the outdegree
distribution. We therefore model the outdegrees by using outdegree terms of the
form θ2+l

∑|Ak|
i=1 1(

∑
j∈Ak : j 6=i xi,j = l) for outdegrees l = 1, . . . , 6. These terms ensure

that the model reproduces, on average, the observed outdegrees 1 through 6, as
confirmed by the goodness-of-fit assessment in Appendix D. Note that a model with
outdegree 5 term but without the other outdegree terms would be more parsimonious
and would capture the spike at outdegree 5, but we found that the resulting model
fails to capture the rest of the outdegree distribution. We therefore include outdegree
1, . . . , 6 terms. The tail of the outdegree distribution is determined by the other
model terms, and looks Poisson in our application.

Last, but not least, it is worth noting that the number of nodes with outdegree
k should not be confused with the number of k-out-stars, k = 1, . . . , 6: e.g., the
number of nodes with outdegree 2 is a number between 0 and n, whereas the number
of 2-out-stars is a number between 0 and n

(
n−1
2

)
≈ n3/2. The number of 2-out-

stars can be much larger than the number of edges, which is at most n (n − 1) ≈
n2. As a consequence, 2-out-star terms can overwhelm edge terms, leading to near-
degenerate models that concentrate probability mass on networks with almost no
2-out-stars or almost all possible 2-out-stars (Handcock, 2003; Schweinberger, 2011;
Butts, 2011; Chatterjee & Diaconis, 2013). By contrast, the outdegree terms we use
cannot overwhelm edge terms, making them well-behaved alternatives.
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Edge Mutual edge

Female outdegree Female indegree Sex-match

Figure 4: Graphical representations of the network features that are used as sufficient
statistics in all models. Circles represent students, directed lines with one direction
represent directed edges, and directed lines with two directions represent mutual
edges. Black-colored circles represent female students, white-colored circles represent
male students, and gray circles represent either female or male students.

3.4 Nodal attribute terms

We assess the influence of students’ sex on degree heterogeneity and homophily with
the following terms:

• A sex-specific outdegree term (female outdegree) of the form θ9
∑

i∈Ak, j∈Ak
xi,j ci.

• A sex-specific indegree term (female indegree) of the form θ10
∑

i∈Ak, j∈Ak
xi,j cj.

• A sex homophily term (sex-match) of the form θ11
∑

i∈Ak, j∈Ak
xi,j 1(ci = cj).

Here, ci is an indicator that is 1 if student i is female and is 0 otherwise, and 1(ci = cj)
is an indicator that is 1 if the sex of students i and j matches and is 0 otherwise.

Note that we do not include indegree terms (other than the female indegree term),
because the model without indegree term is more parsimonious and the in-sample and
out-of-sample performance of models without indegree terms turns out to be excellent,
as shown in Sections 5.4 and 5.5.

3.5 Triadic closure terms

To capture triadic closure in social networks, we use geometrically weighted (GW)
terms based on counts of the following configurations (Butts, 2008; Robins et al.,
2009): outgoing two-path (OTP), outgoing shared partner (OSP), incoming shared
partner (ISP), reciprocated two-path (RTP), and incoming two-path (ITP). We follow
here the naming convention of Butts (2008); the same configurations with different
names are used in Robins et al. (2009) using alternating k-triangle parameterizations.
Graphical representations of these configurations are provided in Figure 5.
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Outgoing Two-Path
(OTP)

Outgoing Shared Partner
(OSP)

Incoming Shared Partner
(ISP)

Reciprocated Two-Path
(RTP)

Incoming Two-Path
(ITP)

Figure 5: Graphical representations of the triadic closure configurations used to
construct GW statistics of the form

∑
i∈Ak 6= j∈Ak

xi,j 1
(
Ttype(i, j) = m

)
(m =

1, . . . , |Ak| − 2). The plots show black-colored pairs of nodes with m = 3 configura-
tions of the specified type, where directed lines with one direction represent directed
edges and directed lines with two directions represent mutual edges.

These five configurations capture different forms of cyclical and transitive closure
in social networks. Their relative frequencies play an important role in the global
structure of social networks, because transitive triads are the basic building blocks of
hierarchical structure, while cyclical triads produce more egalitarian systems (Chase,
1980).

The first three, OTP, OSP, and ISP, capture purely transitive closure. All are
based on the 030T configuration in the triad census of Holland & Leinhardt (1970);
each closes one of the three legs of that triad, but represents a distinct social process.
Closing the OTP leg is the classic “a friend of my friend is my friend” effect; the
OSP leg means that if we both nominate the same person as a friend, then one
of us will nominate the other as a friend; and the ISP leg means that if the same
person nominates both of us as a friend, then one of us will nominate the other as
a friend. By contrast, ITP captures purely cyclical closure and RTP captures both
forms of closure. In addition, the RTP term captures reciprocity, and may hence be
useful for studying the interaction of reciprocity with cyclical and transitive closure in
the ERGM framework, as Block (2015) did in the stochastic actor-oriented modeling
framework (Snijders, 2001).

The GW terms for these triadic closure configurations are based on sufficient
statistics that count the number of pairs of nodes with m configurations of the spec-
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ified type, within each school class Ak (k = 1, . . . , K):

sk,11+m(xk) =
∑

i∈Ak 6= j∈Ak

xi,j 1
(
Ttype(i, j) = m

)
, m = 1, . . . , |Ak| − 2,

where Ttype(i, j) counts the number of configurations of the specified type and
1(Ttype(i, j) = m) is an indicator function, which is 1 if students i and j have
m configurations of the specified type in school class Ak and is 0 otherwise.

For each type of GW term, the natural parameters are given by

ηk,11+m(θ) = θ12 exp(α) [1− (1− exp(−α))m] , m = 1, . . . , |Ak| − 2,

where θ12 is called the base parameter and α > 0 is called the decay parameter.
The motivation for these parameterizations is explained in the seminal papers of
Snijders et al. (2006), Hunter & Handcock (2006), and Hunter (2007). As explained
in Section 1.2, GW terms with θ12 > 0 and α > 0 ensure the value of each additional
configuration of this type is positive but declining. We demonstrate that in Section
5.3.3 below.

An interesting special case of the GW-OTP arises when α = 0. The term then
reduces to a simpler form, called a transitive edge term, with sufficient statistic

sk,12(xk) =
∑

i∈Ak 6= j∈Ak

xi,j max
h∈Ak, h 6= i,j

xi,h xh,j

and natural parameter

ηk,12(θ) = θ12.

Transitive edge terms differ from the triangle terms of Frank & Strauss (1986) by
counting only the first triangle in which two nodes are involved. They are less prone to
degeneracy and have turned out to be useful for capturing transitive closure in practice
(e.g., Snijders et al., 2010; Krivitsky, 2012; Hunter et al., 2012). The assumption that
α = 0 is quite strong, however, and provides a useful comparison for the model where
the decay parameter α is unrestricted, so we include it in Section 5.

4 Likelihood-based inference for population net-

work models

To infer the probability law governing the within-class networks of the population
network, we use likelihood-based inference.

To state the likelihood, let S ⊆ {1, . . . , K} be the set of indices of the sampled
school classes and let ui,j = 1 if xi,j is unobserved and ui,j = 0 if xi,j is observed.
Note that ui,j = 1 can occur in any of the following situations:
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1. Students i and j were members of different school classes, and therefore xi,j is
unobserved by the sampling design.

2. Students i and j were in the same school class, but the school class was not
sampled.

3. Students i and j were in the same school class and the school class was sampled,
but the response of student i was not observed due to missing parental consent
or an inadmissible response by student i.

More details on the sampling design and the missing data can be found in Section 2.
The likelihood is thus proportional to

L(θ) ∝
∑

xi,j∈{0,1}
for all (i, j) with ui,j = 1

[
K∏
k=1

Pθ(Xk = xk)

]
P(Xk,l = xk,l, k 6= l = 1, . . . , K)

=
∑

xi,j∈{0,1}
for all (i, j) with ui,j = 1

∏
k∈S

Pθ(Xk = xk),

where the summation is over all values of xi,j ∈ {0, 1} for all pairs of students (i, j)
for which xi,j is unobserved. It is worth noting that the between-class probability
mass function is eliminated by summation over all possible values of the unobserved
between-class edges and that the functional form of the between-class probability
mass function is immaterial as long as it is sums to 1.

To derive the likelihood, we have assumed that the missing responses are ignorable
for the purpose of likelihood-based inference for the population network model, as
explained by Handcock & Gile (2010) and Koskinen et al. (2010). In other words,
we have assumed that the missing responses due to missing parental consent and
inadmissible responses by students do not depend on the unobserved edges.

Monte Carlo maximization of likelihoods of the form L(θ) given sampled and
missing network data are described by Handcock & Gile (2010). We use an imple-
mentation of these Monte Carlo maximization methods in R package hergm.

5 Results

Using the Polish school multilevel network described in Section 2, we demonstrate
that multilevel networks help estimate the decay parameters of curved ERGMs and
provide new opportunities for assessing the out-of-sample performance of ERGMs
via cross-validation. We first review all model specifications (Section 5.1) and then
assess whether the Monte Carlo maximum likelihood procedure for estimating the
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parameters of all models converged (Section 5.2). We then interpret the estimates of
all parameters and all models (Section 5.3). And finally we turn to model assessment,
reviewing the in-sample performance of each model (Section 5.4) and the out-of-
sample performance of the best-fitting model (Section 5.5).

5.1 Model specifications

We consider nine model specifications, all of which contain the same edge, mutual
edge, outdegree, heterogeneity and homophily by sex terms as described in Section
3, but differ in the type of GW terms:

• Models 1–4 focus on GW-OTP (which is the default type for the dgwesp term
in R packages ergm and hergm):

– Model 1 is fit without the GW-OTP term, which is equivalent to fixing
both the base parameter and the decay parameter at 0.

– Model 2 leaves the base parameter unrestricted but fixes the decay param-
eter at 0, which is equivalent to an ERGM with a transitive edge term, as
discussed in Section 3.5.

– Model 3 leaves the base parameter unrestricted but fixes the decay pa-
rameter at .25, a value that was used in some of the early papers (Hunter
et al., 2008; Goodreau et al., 2009), and has been adopted by others.

– Model 4 leaves both the base parameter and the decay parameter unre-
stricted.

• Models 5–8 have GW terms of types OSP, ISP, RTP and ITP respectively, and
leave both the base parameter and the decay parameter unrestricted.

• Model 9 has GW terms of types OTP and ITP along with a geometrically
weighted indegree term, called GW-Indegree, and leaves the base and decay
parameters of all three GW terms unrestricted.

Note that Models 1–9 have size-adjusted edge and mutual edge coefficients, but the
other coefficients do not have size-adjustments. These simple size-adjustments suffice
here, because the size of school classes are similar: the median class size is 22, and 246
of the 314 classes have 22 ±5 students. Indeed, we show in Sections 5.4 and 5.5 that
these models have excellent in-sample performance and out-of-sample performance,
which suggests that these simple size-adjustments suffice. A less parsimonious model
does not seem worth it—for the data set we use. However, it goes without saying
that for other data sets more sophisticated size-adjustments may be needed, based
on either size-dependent offsets or size-dependent covariates, as discussed in Section
6.
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We estimated the unrestricted parameters of Models 1–9 using the Monte Carlo
maximum likelihood methods described in Section 4.

5.2 Convergence

To assess whether the Monte Carlo maximum likelihood procedure for estimating the
parameters of Models 1–9 converged, we used trace plots of the sufficient statistics
of the model, as is common practice (Hunter & Handcock, 2006; Hunter et al., 2008;
Hunter et al., 2008). All trace plots show excellent convergence, so for brevity we
present just the trace plots for Model 4 in Appendix B. The trace plots for other
models may be obtained from the authors upon request.

The resulting estimates of parameters and the assessment of in-sample and out-
of-sample performance are discussed in Sections 5.3, 5.4, and 5.5, respectively.

5.3 Estimates

The estimates of the unrestricted parameters of Models 1–4, Models 5–8, and Model
9 reported by the Monte Carlo maximum likelihood procedure are shown in Tables 2,
3, and 4, respectively. The standard errors of the estimates are based on the inverse
Fisher information matrix (Hunter & Handcock, 2006).

We provide below a careful interpretation of the parameter estimates of all models.
We believe that interpreting models is important: models that cannot be interpreted
are black boxes, and black boxes do not advance scientific knowledge. Curved ERGMs
with GW terms are complex models, and many papers using them interpret them only
broadly, e.g., by stating that GW-OTP captures transitivity. There are some good
introductions to interpreting GW terms for undirected networks in the seminal paper
of Snijders et al. (2006) and in Hunter (2007), but those papers do not have (a)
directed network data; (b) sampled data; (c) missing data; and (d) size-adjustments
for multiple networks of different sizes. To advance proper use of curved ERGMs
with GW terms, it is imperative to help users understand how these complex models
can be interpreted, in particular in the presence of sampled and missing data, and
size-adjustments.

To interpret the individual and joint impact of the parameter estimates, we use
the log odds of the conditional probability that a student i nominates another student
j as a playmate along with log odds ratios or differences in log odds (based on changes
of sufficient statistics, i.e., change statistics). Log odds and log odds ratios are widely
used in logistic regression and categorical data analysis (Agresti, 2002) and have long
been used in the ERGM literature for interpretive purposes (e.g., Snijders et al., 2006;
Hunter & Handcock, 2006; Krivitsky, 2012). Both of these metrics focus on how the
effects in the model influence the presence or absence of a single tie. Both condition
on the rest of the network and assume that all other tie variables are fixed. Differences
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in the conditional log odds ratios emphasize how the odds of a single tie change if
the tie does versus does not create one or more of the configurations of interest. A
useful benchmark for conditional log odds ratios is the value zero. This implies the
two configurations compared lead to the same conditional probability of a tie.

The log odds of the conditional probability that a student i nominates another
student j as a playmate given the rest of the network X−(i,j) = x−(i,j) and the sex
indicators ci and cj of students i and j is defined as follows:

logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci, cj)) = log
P(Xi,j = 1 | X−(i,j) = x−(i,j), ci, cj)

P(Xi,j = 0 | X−(i,j) = x−(i,j), ci, cj)
.

Note that the conditional probability of the tie between students i and j is conditional
on the rest of the network, that is, everything else in the network is considered fixed.
For each of Models 1–8, the conditional log odds is given by

(θ1 − log |Ak|) + (θ2 + log |Ak|) xj,i + . . .︸ ︷︷ ︸
effects of edge, mutual edge, outdegree

+ θ9 ci + θ10 cj + θ11 1(ci = cj)︸ ︷︷ ︸
effects of sex

+

|Ak|−2∑
m=1

[
ηk,11+m(θ) sk,11+m(x−(i,j), xi,j = 1)− ηk,11+m(θ) sk,11+m(x−(i,j), xi,j = 0)

]
︸ ︷︷ ︸,

effects of triadic closure

where the dots refer to the effect of the outdegree of student i. The one exception is
Model 9, which has three GW terms instead of one, so the log odds contains three
differences in GW terms rather than one difference. Here, we have assumed that
students i and j belong to the same school class, denoted by Ak.

We interpret these effects one by one, with the exception of the effect of outdegrees
(which are fit to match the artifact produced by the questionnaire design, see Section
3.3). As a running example, we use Model 4, the model with the GW-OTP and
unrestricted base and decay parameter. Models 5–8, which only differ in the GW
term that captures the effect of triadic closure, are compared in Section 5.3.3. Model
9 is discussed at the end of Section 5.3.

5.3.1 Edges and reciprocity effects

Interpreting the sign and magnitude of the edge and mutual edge coefficients is dif-
ferent when using size adjustments, so those coefficients need to be interpreted with
care. The size-adjusted effects for edges and mutuals, as a function of class size, are
shown in Figure 6.
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Model 1 Model 2 Model 3 Model 4

No GW GW-OTP(0) GW-OTP(.25) GW-OTP(free)

θ1 Edges .152 (.015) ∗ ∗ ∗ −.720 (.020) ∗ ∗ ∗ −1.001 (.019) ∗ ∗ ∗ −.706 (.016) ∗ ∗ ∗
where ηk,1(θ) = θ1 − log |Ak| is the edge coefficient of Ak (k = 1, . . . ,K)

θ2 Mutual −1.501 (.021) ∗ ∗ ∗ −1.703 (.022) ∗ ∗ ∗ −1.900 (.023) ∗ ∗ ∗ −1.992 (.023) ∗ ∗ ∗

where ηk,2(θ) = θ2 + log |Ak| is the mutual edge coefficient of Ak (k = 1, . . . ,K)

Female:

θ9 Outdegree .244 (.018) ∗ ∗ ∗ .228 (.016) ∗ ∗ ∗ .211 (.016) ∗ ∗ ∗ .206 (.016) ∗ ∗ ∗
θ10 Indegree −.077 (.018) ∗ ∗ ∗ −.046 (.016) ∗ ∗ −.067 (.015) ∗ ∗ ∗ −.098 (.013) ∗ ∗ ∗

θ11 Sex-match 1.599 (.016) ∗ ∗ ∗ 1.231 (.014) ∗ ∗ ∗ 1.032 (.012) ∗ ∗ ∗ .900 (.011) ∗ ∗ ∗
GW:

θ12 Base 0 (fixed) 1.055 (.018) ∗ ∗ ∗ 1.237 (.016) ∗ ∗ ∗ .713 (.012) ∗ ∗ ∗
α Decay 0 (fixed) 0 (fixed) .25 (fixed) .913 (.014) ∗ ∗ ∗

Table 2: Monte Carlo maximum likelihood estimates and standard errors of all
parameters, with the exception of outdegree parameters, which can be found in Ap-
pendix C. Significance at levels .1, .05, and .001 is indicated by ∗, ∗∗, and ∗ ∗ ∗,
respectively. A graphical representation of GW-OTP is shown in Figure 5.

First, note that the interpretation of the size-invariant edge parameter θ1 is more
complicated than in the simple “edges-only” Bernoulli model discussed in Krivitsky
et al. (2011) and Section 3.2. In the simple Bernoulli model, exp(θ1) is the limiting
expected mean degree. In ERGMs with additional terms that interpretation no longer
holds, because the limiting expected mean degree will reflect the impact of these
additional terms. However, one can still interpret the size-adjusted coefficients, θ1 −
log |Ak|, in terms of their effect on the conditional log odds of a tie. To do so, note
that the sizes of the school classes range from 11 to 33 and the estimates of the
size-invariant edge parameter θ1 range from −1.001 to .290 in Models 1–8, so the
size-adjusted edge coefficients satisfy ηk,1(θ) = θ1 − log |Ak| < −2.1 for all models
and all school classes Ak. The strong and negative edge coefficients imply that the
conditional odds of a tie is negative, unless the tie creates one or more network
configurations with a strong and positive weight.

The mutual edge coefficients are likewise size-adjusted. While the estimates of the
size-invariant mutual edge parameter θ2 are negative, almost all size-adjusted mutual
edge coefficients ηk,2(θ) = θ2 + log |Ak| are positive (we address the one exception
below). For example, the estimate of θ2 under Model 4 is −1.992, but the estimates
of the size-adjusted mutual edge coefficients ηk,2(θ) are positive and range from .41
(class size 11) to 1.50 (class size 33). This suggests that reciprocity is a powerful force
in these classroom networks: the change in the log odds of the conditional probability
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Model 5 Model 6 Model 7 Model 8

GW-OSP GW-ISP GW-RTP GW-ITP

θ1 Edges −.524 (.015) ∗ ∗ ∗ −.501 (.015) ∗ ∗ ∗ .290 (.013) ∗ ∗ ∗ −.070 (.014) ∗ ∗ ∗
where ηk,1(θ) = θ1 − log |Ak| is the edge coefficient of Ak (k = 1, . . . ,K)

θ2 Mutual −1.834 (.023) ∗ ∗ ∗ −1.829 (.023) ∗ ∗ ∗ −2.661 (.031) ∗ ∗ ∗ −1.449 (.022) ∗ ∗ ∗

where ηk,2(θ) = θ2 + log |Ak| is the mutual edge coefficient of Ak (k = 1, . . . ,K)

Female:

θ9 Outdegree .253 (.017) ∗ ∗ ∗ .199 (.016) ∗ ∗ ∗ .207 (.017) ∗ ∗ ∗ .251 (.019) ∗ ∗ ∗
θ10 Indegree −.127 (.014) ∗ ∗ ∗ −.112 (.015) ∗ ∗ ∗ −.110 (.015) ∗ ∗ ∗ −.146 (.018) ∗ ∗ ∗

θ11 Sex-match .961 (.011) ∗ ∗ ∗ .954 (.012) ∗ ∗ ∗ 1.214 (.016) ∗ ∗ ∗ 1.255 (.015) ∗ ∗ ∗
GW:

θ12 Base .522 (.009) ∗ ∗ ∗ .471 (.008) ∗ ∗ ∗ .435 (.010) ∗ ∗ ∗ .134 (.005) ∗ ∗ ∗
α Decay 1.097 (.016) ∗ ∗ ∗ 1.226 (.015) ∗ ∗ ∗ .685 (.022) ∗ ∗ ∗ 2.105 (.068) ∗ ∗ ∗

Table 3: Monte Carlo maximum likelihood estimates and standard errors of all
parameters, with the exception of outdegree parameters, which can be found in Ap-
pendix C. Significance at levels .1, .05, and .001 is indicated by ∗, ∗∗, and ∗ ∗ ∗,
respectively. The size adjustments − log |Ak| range from −3.5 to −2.4. Graphical
representations of GW terms of types OSP, ISP, RTP, and ITP can be found in
Figure 5.

that a student i nominates another student j as a playmate when the nomination is
reciprocated is

logit(P(Xi,j = 1 | Xj,i = 1, X−(i,j),−(j,i) = x−(i,j),−(j,i), ci, cj))

− logit(P(Xi,j = 1 | Xj,i = 0, X−(i,j),−(j,i) = x−(i,j),−(j,i), ci, cj))

= −1.992 + log |Ak|+ . . . ,

where X−(i,j),−(j,i) denotes the network X excluding Xi,j and Xj,i and the dots refer
to the effect of student j’s outdegree. The size-adjusted coefficients range from .41
(class size 11) to 1.50 (class size 33); so, the conditional odds are multiplied by
exp(.41) = 1.51 to exp(1.50) = 4.48 when nominations are reciprocated rather than
unreciprocated.

There is one exception to the general rule of a positive size-adjusted mutual effect:
Model 7. This model has two reciprocity effects: the baseline reciprocity ηk,2(θ) =
θ2 + log |Ak| and the reciprocity-triad effect in the form of GW-RTP. The baseline
reciprocity estimate is −2.661 + log |Ak|, which ranges from −.263 (class size 11) to
.836 (class size 33). It is small but negative for classes with 11–14 students, and
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Base terms:

θ1 Edges −1.042 (.017) ∗ ∗ ∗
θ2 Mutual −1.483 (.028) ∗ ∗ ∗

Female:

θ9 Outdegree .094 (.011) ∗ ∗ ∗
θ10 Indegree −.013 (.010)

θ11 Sex-match .838 (.012) ∗ ∗ ∗

GW-OTP:

θ12 Base .891 (.010) ∗ ∗ ∗
α1 Decay 1.311 (.020) ∗ ∗ ∗

GW-ITP:

θ13 Base −.273 (.017) ∗ ∗ ∗
α2 Decay 1.896 (.106) ∗ ∗ ∗

GW-Indegree:

θ14 Base .837 (.015) ∗ ∗ ∗
α3 Decay 1.077 (.048) ∗ ∗ ∗

Table 4: Monte Carlo maximum likelihood estimates and standard errors of all
parameters of Model 9, with the exception of outdegree parameters. Significance at
levels .1, .05, and .001 is indicated by ∗, ∗∗, and ∗ ∗ ∗, respectively. A graphical
representation of GW-OTP and GW-ITP is shown in Figure 5.

positive for larger classes. The negative effect of the baseline reciprocity term in
small school classes will be offset by the positive reciprocity-triad term if a tie creates
one or more configurations of type RTP. So a tie that creates one of the mutual
legs of the RTP configuration gets both the baseline mutual effect (which may be
slightly negative) and the GW-RTP effect (which is larger and positive). Even in
small classes this net effect will be positive, and the model suggests that, for small
classes, reciprocity is more likely to occur in the context of an RTP configuration
than by itself.

5.3.2 Sex effects

There is evidence for both moderate degree heterogeneity and strong homophily by
sex.

Under all models, the estimate of the female outdegree parameter is small and
positive, the estimate of the female indegree parameter is small and negative, and the
estimate of the sex-match parameter is large and positive.

These three sex-related terms, along with the edge term, saturate the model for
the sex-mixing matrix (see Table 1) in the sense that the counts in the sex-mixing ma-
trix are completely determined by the number of edges and the sex-related sufficient
statistics (female outdegree, female indegree, and sex-match). As a result, when there
are no missing data, the MLE reproduces the observed sex-mixing matrix, because
it matches the observed number of edges and sex-related sufficient statistics. When
there are missing data – as in the Polish multilevel network – the MLE reproduces the
sex-mixing matrix averaged over all possible realizations of the missing data, because
it matches the conditional expectation of the number of edges and the sex-related
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Figure 6: Size-adjusted edge and mutual edge coefficients based on the parameter
estimates of Model 4.

sufficient statistics given the observed network data, as discussed in Appendix A.
Note that the MLE does not reproduce the sex-mixing matrix in Table 1 based on
the subset of 44 school classes without missing data. Instead, the MLE reproduces
the sex-mixing matrix based on the whole set of 304 school classes, averaged over all
possible realizations of the missing data. The Monte Carlo MLE, which we use as an
approximation of the intractable MLE, does so approximately.

To interpret the coefficient values, consider Model 4 with estimates .206 (female
outdegree), −.098 (female indegree), and .900 (sex-match). Note that the sex-match
coefficient is the same for males and females, by construction. But this does not
mean that an equal fraction of ties will be sex matched for both sexes; the level of
homophily is determined by the net impact of all three sex-specific parameters.

The change in the log odds of the conditional probability that a female student i
nominates another student j as a playmate when j is female rather than male is

logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 1, cj = 1))

− logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 1, cj = 0))

= (.206− .098 + .900)− .206 = .802.

The fact that the conditional log odds increases by .802 indicates that female students
are more likely to choose another female than a male as a playmate. This is due to
both the (negative) in- and (positive) out-degree differences for females, and the sex-
match effect.

For males, we can calculate the analogous comparison. The change in the log odds
of the conditional probability that a male student i nominates another student j as
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a playmate when j is male rather than female is

logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 0, cj = 0))

−logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 0, cj = 1)) = .900− (−.098) = .998.

The conditional log odds increases by .998, so male students tend to choose male
playmates over female playmates. Here, the net effect is determined by the marginal
negative indegree effect for females and the sex-match effect. Note that this rela-
tive homophily effect is somewhat stronger for males than for females: compared to
females, males are relatively more likely to choose a sex matched playmate.

Finally, the conditional log odds of a tie between two females versus between two
males is given by

logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 1, cj = 1))

−logit(P(Xi,j = 1 | X−(i,j) = x−(i,j), ci = 0, cj = 0))

= (.206− .098 + .900)− (.900) = .108.

The conditional log odds increases by .108, so female-female ties are more common
than male-male ties. All three sex-specific effects are combining to generate this net
effect.

What is interesting here is that males are relatively more likely to choose sex
matched playmates than females, but female-female ties are still more common than
male-male ties. This illustrates some of the subtleties in interpreting parameters for
even the simpler dyadic-independent terms in ERGMs. This is not an ERGM-specific
issue; all generalized linear models (GLMs) (McCullagh & Nelder, 1983) for counts
have this property. GLMs decompose the observed patterns in cross-tabulated counts
into marginal and interaction effects (here, degree heterogeneity by sex and sex-match,
respectively). The resulting parameters can be combined in different ways to highlight
specific effects (similar to contrasts in ANOVA). The direct homophily effect in our
models, represented by θ11, is the same for both males and females, by construction.
But the effect of sex on mixing between males and females is also influenced by the
sex-linked degree heterogeneity: females are less likely to be nominated (by both
sexes) and more likely to nominate others (of both sexes). The net result is higher
rates of female sex matched ties, but greater relative propensities for sex-match among
males than females.

5.3.3 Triadic closure effects

We turn finally to the effect of triadic closure, first comparing Model 1 without triadic
closure to Models 2–4 with triadic closure captured by GW-OTP, and then comparing
Models 4–8 with GW terms of types OTP, OSP, ISP, RTP and ITP.
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Models 1–4 impose a sequence of restrictions on the base and decay parameter of
the GW term. Model 1 excludes the GW term, which is equivalent to assuming that
both the base and decay parameter of this term are 0, and there is no propensity for
triadic closure. Models 2–4 include the GW-OTP term, with different restrictions on
the decay parameter, but all 3 models show a strong and significant base parameter,
which suggests Model 1 is misspecified. Comparing the estimates in Model 1 to the
corresponding estimates in Models 2–4 shows a moderate to large impact of this mis-
specification on all of the other estimates. For example, the estimate of the sex-match
parameter decreases from 1.599 (Model 1) to .900 (Model 4), a reduction of more than
40%. A similar decrease can be seen in the mutual edge parameter. The decrease
in the estimate of the sex-match parameter with the inclusion of GW-OTP indicates
that triadic closure accounts for some of the homophily by sex, as found in previous
studies of school friendship networks (e.g., Lubbers, 2003; Goodreau et al., 2009).

Models 2 and 3 fix the decay parameter at two values repeatedly used in the
literature (e.g., Hunter et al., 2008; Goodreau et al., 2009), while Model 4 leaves it
free to be estimated. A key finding is that the estimate of the decay parameter,
.913 (Model 4), is significantly greater than 0, and more than 3 times greater than
the other fixed value of .25 (Model 3). That value was chosen by trial and error
in the original papers, based on qualitatively optimizing the goodness-of-fit to the
Add Health school friendship networks (Hunter et al., 2008; Goodreau et al., 2009).
Our results suggest this decay value does not generalize to all networks, or even to
all school friendship networks. Fixing the decay parameter at a value other than
the MLE results again has a moderate to large impact on the estimates of all other
parameters in the model. As shown in Section 5.4 below, the differences between
these model specifications have a considerable impact on goodness-of-fit.

To interpret the estimates of the base and decay parameter of GW-OTP in Model
4, recall that the effect of triadic closure on the log odds of the conditional probability
that student i nominates student j as a playmate is

|Ak|−2∑
m=1

[
ηk,11+m(θ) sk,11+m(x−(i,j), xi,j = 1)− ηk,11+m(θ) sk,11+m(x−(i,j), xi,j = 0)

]
,

where

ηk,11+m(θ) = θ12 exp(α) [1− (1− exp(−α))m] , m = 1, . . . , |Ak| − 2.

If the edge Xi,j = 1 increases the number of OTP shared playmates of (i, j) from
0 to 1 relative to the network with Xi,j = 0, assuming the rest of the network is the
same, then the contribution of GW-OTP to the log odds of the conditional probability
of the edge is

ηk,11+1(θ)− 0 = θ12 exp(α) [1− (1− exp(−α))] = θ12.
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Figure 7: Estimated added value of additional shared playmates of type OTP under
models 2–4, as explained in the text. The added value of the first shared playmate
is θ12, while the added value of m-th shared playmate is θ12 (1− exp(−α))m−1 (m =
2, . . . , |Ak| − 2). To make the plots, we used the estimates of θ12 and α shown in
Table 2.

If the edge Xi,j = 1 increases the number of OTP shared playmates of (i, j) from 1
to 2, then the contribution of GW-OTP to the log odds of the conditional probability
of the edge is

ηk,11+2(θ)− ηk,11+1(θ) = θ12 (1− exp(−α)).

If α > 0, then (1 − exp(−α)) < 1, so it acts as penalty on θ12, reducing the value
of the second shared playmate. The smaller the value of α, the larger this penalty
becomes. When α = 0 – the transitive tie specification in Model 2 – the penalty zeros
out the value of the second OTP shared playmate.

In general, if the edge Xi,j = 1 increases the number of shared playmates of (i, j)
from m − 1 to m relative to the network with Xi,j = 0, assuming the rest of the
network is the same, then the log odds of the conditional probability of the edge
increases by

ηk,11+m(θ)− ηk,11+m−1(θ) = θ12 (1− exp(−α))m−1, m = 2, . . . , |Ak| − 2.

If θ12 > 0 and α > 0, then θ12 (1−exp(−α))m−1 decreases geometrically asm increases.
In other words, the added value of the m-th shared playmate decreases at a geometric
rate, controlled by the decay parameter α:

θ12︸︷︷︸ > θ12 (1− exp(−α))︸ ︷︷ ︸ > θ12 (1− exp(−α))2︸ ︷︷ ︸ > . . .

added value m = 1 added value m = 2 added value m = 3
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Figure 8: Models 4–8: Added value of additional configurations of type OTP (Model
4), OSP (Model 5), ISP (model 6), RTP (Model 7), and ITP (Model 8), as explained
in the text. The added value of the first configuration of the specified type is θ12, while
the added value of m-th configuration is θ12 (1− exp(−α))m−1 (m = 2, . . . , |Ak| − 2).
To make the plots, we used the estimates of θ12 and α shown in Tables 2 and 3.

And, as in the case of m = 2, when α = 0 the penalty zeros out contributions for all
shared partners beyond the first.

A graphical representation of the predicted added value of additional shared play-
mates for Models 2–4 is shown in Figure 7, using the estimates of the base θ12 and
decay parameters α under Models 2–4 from each model. The decay parameter values
rise from 0 in Model 2 to .913 in Model 4, and the impact is clearly visible, lowering
the penalty on the value of additional shared partners, and increasing predicted den-
sity in the right tail of the distribution. Under Model 2, the added value of the first
shared playmate is 1.055, while the added value of all subsequent shared playmates
is 0 (m = 2 . . . , |Ak| − 2). Under Models 3 and 4, the added value of the first shared
playmate is 1.237 and .713, respectively, and the added value of the m-th shared
playmate is 1.237 × .221m−1 and .713 × .599m−1, respectively (m = 2, . . . , |Ak| − 2).
The added value of additional shared playmates is always positive, but it decreases
at a geometric rate, and the rate of decrease is slower when the value of the decay
parameter is higher. The rate of geometric decay is high enough to ensure that the
added value of the fifth shared playmate is less than .1 in all cases.

In terms of the impact on the odds of a tie, the postive effect of adding the
first shared partner is still not enough to outweigh the large negative estimated edge
coefficients ηk,1(θ) = θ1 − log |Ak|, which are less than −3 under Models 2–4. So the
log odds of a tie are still negative if the tie only adds a shared playmate, but they
can become positive if that tie has other benefits such as reciprocity or homophily by
sex.

Turning to Models 5–8, we find that the base parameter estimates of all of the the
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GW terms are positive and significant according to Table 3, and the decay parameters
are also large and positive. While there is a positive tendency toward each type of tri-
adic closure, there are substantial differences in the specific base and decay parameter
estimates, and the joint effect of these differences can be seen in Figure 8, which plots
the added value each model assigns to additional configurations. Note that the mod-
els are displayed in order by type of closure: the three transitive closure specifications
(Models 4-6, GW-OTP, OSP and ISP), followed by GW-RTP, which represents both
transitive and cyclical closure, and finally the cyclical closure specification GW-ITP
in Model 8.

A clear distinction can be seen in Figure 8 between the added value assigned
by transitive versus purely cyclical (Model 8: ITP) specifications, and this follows
directly from the parameter estimates. In Model 8, the base parameter estimate is
much smaller that in any other model, and this will reduce the overall value of these
cyclic triads, relative to the transitive triads. However, the decay parameter estimate
is much larger that in the other models, and this reduces the rate at which the
added value of additional configurations declines. The joint effect is the lower, flatter
distribution of added value we see in the last panel of Figure 8. In the hierarchical
world of children, it is not surprising that egalitarian cyclic triads have lower value
than transitive hierarchical triads. The difference in the base parameter estimates
between Models 4 and 8 – exp(.713− .134) = 1.78 – implies a nearly 80% increase in
the odds of a tie if it forms the first triad of type OTP, compared to a triad of type
ITP. But the decay parameter estimate for the GW-ITP term is a surprisingly large
2.105 – almost an order of magnitude larger than the commonly used fixed estimate
of .25. While this increases the value of multiple cyclic triads formed by a single tie,
the low overall value keeps the net impact in line with the transitive triads.

By contrast, the transitive GW terms of types OSP, and ISP and the combined
transitive and cyclic term of type RTP in Models 5–7 display a pattern more similar
to the transitive GW-OTP in Model 4. Recall that OTP, OSP, and ISP all lead to
the same transitive triad 030T in the triad census of Holland & Leinhardt (1970),
but each closes one of the three legs of that triad. Comparing the base parameter
estimates GW terms of types OTP, OSP, and ISP suggests that the GW-OTP has the
strongest initial triadic closure effect, increasing the relative odds of a tie by about
20 to 30% (exp(.713 − .522) to exp(.713 − .435)). OTP is the classic “a friend of
my friend is my friend” dynamic. By contrast, OSP suggests that pairs of playmates
nominate the same shared playmates, whereas ISP suggests that pairs of playmates
are nominated by the same shared playmates. Both of these latter social forces make
sense, but the stronger effects for OTP may explain why only it has a special cultural
phrase.

Models can include multiple GW terms. An example is Model 9, which contains
three GW terms: GW-OTP, GW-ITP, and GW-Indegree. The estimates and stan-
dard errors of all parameters of Model 9, including the base and decay parameters
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Figure 9: BIC of Models 1–8. The BIC of Model 9, not plotted, is 239,581.

of all three GW terms, can be found in Table 4. We do not attempt to interpret
them here, although these estimates can be interpreted by using conditional log odds
and log odds ratios as explained above. While Model 9 demonstrates that the base
and decay parameters of multiple GW terms can be estimated, we caution that the
interpretation of models with multiple GW terms is more complicated, and possi-
ble correlations among GW terms may raise multicollinearity issues (as in ordinary
regression with correlated predictors).

Last, but not least, we turn to the question of which GW terms to use. GW terms
can be selected based on AIC or BIC (see, e.g., Hunter et al., 2008). The BIC of
Models 1–9 is shown Figure 9. It is notable that the BIC of Model 4 with unrestricted
decay parameter is much lower than the BIC of Models 1, 2, and 3 with restricted
decay parameter, underscoring once again the importance of estimating, rather than
fixing, decay parameters. Among the models with GW terms of types OTP, OSP, ISP,
RTP and ITP, the models capturing transitive closure (Models 4, 5, and 6) clearly
outperform the models capturing cyclical closure (Models 7 and 8) in terms of BIC,
while Model 9 with three GW terms is heavily penalized by the BIC. The BIC hence
agrees with the informal observation made above: it is transitive closure, rather than
cyclical closure, that drives network formation in the Polish multilevel network.

5.3.4 Standard errors

In addition to facilitating the estimation of decay parameters, the standard errors
of the decay parameter estimates in Tables 2, 3, and 4 demonstrate that multilevel
networks, by providing replication, help reduce the uncertainty about the decay pa-
rameter estimates.

The standard errors of the decay parameter estimates for the directed, transitive
GW terms of types OTP, OSP, and ISP range from .014 (GW-OTP in Model 4) to .020
(GW-OTP in Model 9). As noted before, we know of only four other published papers
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that estimated the decay parameters in a curved ERGM, Hunter (2007), Koskinen
et al. (2010), Suesse (2012), and Almquist & Bagozzi (2015). These are not strictly
comparable studies as all of them are based on undirected networks, which were
slightly larger than our largest network (Hunter, Koskinen et al., and Suesse: 36;
Almquist & Bagozzi: 143; here: 11 to 33). Still, the comparison is suggestive, as the
standard errors reported for the GW-ESP decay parameter estimates in their models
are .109 (Hunter, 2007), .151 (Suesse, 2012), and .099 and .706 (Almquist & Bagozzi,
2015) – roughly an order of magnitude higher than ours. Note that Koskinen et al.
(2010) follow a Bayesian approach and do not report standard errors, but summaries
of the posterior suggest that the posterior standard deviation may be as large as the
standard errors reported by Hunter (2007) and Suesse (2012) for the same network,
the Lazega law firm advice network.

5.4 In-sample performance: goodness-of-fit

The traditional approach to evaluating the goodness-of-fit (GOF) of ERGMs is to
assess how well the model predicts observed network features that were not included
in the model (Hunter et al., 2008). This is done by comparing the statistics from the
observed network to statistics from networks simulated from the model. Because the
comparison relies on the same network that was used to estimate the model, this is
an assessment of the in-sample performance of ERGMs. The purpose of this type of
assessment is to evaluate the generative performance of the fitted model: to determine
whether a parsimonious set of terms that capture local, micro-level effects are able
to reproduce the overall macro-level structural signatures in the network. As always
with statistical assessments, bad performance allows hypotheses to be rejected, and
good performance is not a form of proof, but in this case simply implies that the data
are consistent with the hypothesized generative model.

The presence of missing data complicates GOF comparisons, because we want to
compare model-based predictions to the 304 sampled school classes, but 260 of them
have missing data. We could compare model-based predictions of subgraph statistics
to fully observed subgraphs: e.g., we could compare model-based predictions of the
number of mutual edges to the number of pairs of students for which both edges
are observed. Such comparisons have at least two disadvantages, however. First, we
would make the implicit assumption that the pairs of students for which one edge
is present while the other one is missing or for which both edges are missing do not
reciprocate edges. Second, it would reduce the number of pairs of students on which
the comparison is based. The issue exists for both dyadic statistics (e.g., mutual
edges) and triadic statistics (e.g., transitive edges), but it tends to be worse when the
statistic involves more edges.

To avoid these two disadvantages, we compare model-based predictions of statis-
tics to the conditional expectation of those statistics given the observed data. In other
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Model 1 Model 2 Model 3 Model 4

No GW GW-OTP(0) GW-OTP(.25) GW-OTP(free)

Figure 10: In-sample performance of Models 1–4. The red curves indicate the
conditional expectations of the statistics given the observed data. The in-sample
performance of Models 1–4 in terms of outdegrees is assessed in Appendix D.

words, we compare model-based predictions to weighted averages of those statistics,
averaging over all possible values of the missing data, with the weights given by
the conditional distribution of missing data given observed data. The conditional
expectations of statistics cannot be calculated analytically, but it is possible to ap-
proximate them by Markov chain Monte Carlo sample averages of those statistics
based on simulations of networks from the conditional distribution of missing data
given the observed data.

Figures 10 and 11 compare the GOF of Models 1–8, using the statistics proposed
by Hunter et al. (2008): distributions of geodesic distances, indegrees, the number of
dyads (unconnected or connected) with m shared partners (DSP), and the number of
connected dyads with m shared partners (ESP). For each model, we use the directed
versions of the DSP and ESP statistics that match the type of the GW term in the
model. Additional GOF plots for other types of DSP and ESP statistics are shown in
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Model 5 Model 6 Model 7 Model 8
GW-OSP GW-ISP GW-RTP GW-ITP

Figure 11: In-sample performance of Models 5–8. The red curves indicate the
conditional expectations of the statistics given the observed data. The in-sample
performance of Models 5–8 in terms of outdegrees is assessed in Appendix D.

Appendix E, and GOF plots for the outdegrees can be found in Appendix D. All GOF
plots are based on 10,000 simulated networks generated from the estimated models.
Given the missing data, we compare the statistics of the simulated networks to the
conditional expectation of the statistics given the observed data. The conditional
expectations of statistics are model-dependent and can therefore vary from model to
model, but the variation is small, as can be seen in Figures 10 and 11.

The GOF performance of Models 1–4 different quite a bit, reflecting the impact
of estimating, rather than fixing, the decay parameter of the GW-OTP. Model 1,
which does not have a GW term, is unable to match any of the GOF statistics of the
observed network data. The models with the GW-OTP (Models 2–4) do progressively
better, as the fixed decay parameter value gets closer to the MLE. Model 4 – which
estimates the decay parameter – shows superior GOF performance across the board.
It provides a very good fit to the indegree distribution, especially when compared to
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Model 1, without requiring a specialized term like a geometrically weighted degree.
This is a classic example of how a macro-level network signature, like the indegree
distribution, may be consistent with a generative process rooted in a very different
dynamic, like triad closure. Model 4 also matches the full DSP and ESP distributions
almost perfectly, using a single parsimonious curved ESP term with two parameters.
The fact that this model also fits the DSP distribution indicates that an additional
DSP term is not required.

The performance of Models 5–8 with GW terms of types OSP, ISP, RTP and ITP
is shown in Figure 11. It is evident that the models with transitive triad terms (OTP,
OSP, and ISP) outperform the models with cyclical triad terms (RTP and ITP).
These results reinforce the findings from Section 5.3 that cyclical closure fails to
capture the micro-level patterns that lead to hierarchical structure in the nomination
of playmates.

In summary, reciprocity, attribute homophily and triadic closure are important
micro-level determinants in the nomination of playmates. Curved ERGMs with GW
terms are parsimonous models that can accurately capture the observed triadic closure
along with other aggregate network patterns. Multilevel network data make it possible
to estimate the MLEs of the triadic closure decay parameters, which results in better
goodness of fit.

5.5 Out-of-sample performance: cross-validation

The final advantage of multilevel networks we will demonstrate here is that such data
make it possible assess the out-of-sample performance of ERGMs using the traditional
statistical principle of cross-validation. We can divide the 304 school classes into two
subsets, use one as a training subset to estimate the model, and the other as a held-
out subset to assess the predictive power of the estimated model. For convenience,
we use the GOF statistics from Section 5.4 to assess the predictive power of ERGMs,
but in principle any network statistics could be used.

We assess the out-of-sample performance of models by generating 100 model-based
predictions as follows:

• Step 1: Stratify the 304 school classes by size and sample without replacement
50% of the school classes from each stratum (rounded up) to create a train-
ing data set for estimating models and a held-out data set for model-based
predictions.

• Step 2: Estimate models based on the training data set.

• Step 3: Compare model-based predictions of the GOF statistics to the observed
GOF statistics for the held-out data set.
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Figure 12: Out-of-sample predictions based on Model 4 with GW-OTP and esti-
mated decay parameter. Each black curve represents one of the 100 out-of-sample
predictions while each red curve represents one of the 100 out-of-sample observations.

Some remarks are in order. Step 1 uses stratified random sampling based on class
size to facilitate the comparison of network statistics. The reason is that network
statistics depend on class size and stratifying by class size helps compare network
statistics across multiple random splits of the 304 school classes. The 50-50% split
implies that the training data set is small while the held-out data set is large, relative
to conventional cross-validation procedures with more observations in the training
data set than the held-out data set. The small training data set makes the estimation
more challenging as there is less information about the parameters of interest (in
the statistical sense of Fisher information), but it has the advantage of reducing
computing time. Step 2 is the most time-consuming step of the procedure, because
it requires estimating curved ERGMs from 100 different training subsets. Even when
parallel computing on multi-core computers or computing clusters is used, estimating
curved ERGMs from 100 different training subsets can take days or weeks (depending
on how the parallel computing is implemented and how much computing power is
available). Step 3 generates out-of-sample predictions for the held-out data sets by
using the estimates of the size-invariant parameters θ1, . . . , α obtained in Step 2 and
the size-dependent offsets log |Ak| based on the sizes of the school classes Ak in the
held-out data set. For each held-out data set, 10,000 model-based predictions are
generated, averaged, and compared to the observed held-out data set.

To demonstrate the cross-validation approach we use Model 4 (GW-OTP with
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estimated decay parameter), because the in-sample performance of Model 4 is the
best of all of the models. Assessing the out-of-sample performance of other models is
possible but time-consuming.

Figure 12 shows the results of the out-of-sample predictions based on Model 4.
Overall, the out-of-sample predictions seem to be close to the observed network data.
The strong out-of-sample performance suggests that our findings can be generalized
to the population of third-grade classes in Poland.

6 Discussion

We have demonstrated that multilevel network data facilitate the estimation of curved
ERGMs with GW terms, without fixing the decay parameters or conditioning on the
observed number of edges. The MLE of the decay parameter for the traditional GW-
OTP term was significantly different than the fixed values commonly used in practice.
When we fixed the decay parameters at these values, we found this also affected all
of the other parameter estimates in the model, in some cases quite substantially. The
model with the estimated decay parameter had much better in-sample performance
characteristics, and showed remarkable goodness of fit across the board. We also
estimated the decay parameters of four additional GW triad specifications for directed
networks. To the best of our knowledge, estimates of those decay parameters have
never been published before.

The multilevel network data improved statistical inference in other ways also,
reducing the uncertainty in our parameter estimates, and allowing us to conduct a
traditional cross-validation analysis, to complement the traditional in-sample good-
ness of fit assessments used for ERGMs. When used with recently developed size-
invariant parameterizations, the multilevel analytic framework provides a robust basis
for curved ERGM estimation and performance assessment.

Substantively, our results suggest that the nomination of playmates among third-
grade school children in Poland is driven by reciprocity, heterogeneity and homophily
by sex, and transitive closure. These results agree by and large with the results ob-
tained by others (e.g., Lubbers, 2003; Lubbers & Snijders, 2007; Goodreau et al.,
2009), though we have more confidence in the triadic effects now that we have the
MLEs for the decay parameters. As we demonstrated in Section 5.3, fixing the decay
parameter of GW terms at values far from the MLE affects all other parameter esti-
mates, and can lead to incorrect inferences. In our application the value of additional
shared partners was 2-3 times greater than the fixed levels suggested, and the effects
of both reciprocity and homophily by sex fell by 30-40% once the decay term was
properly estimated.

An important direction of future research is the development of more sophisticated
size-adjustments for curved ERGMs. We have used here curved ERGMs with a simple
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form of size-adjusted parameterization based on Krivitsky et al. (2011) and Krivitsky
& Kolaczyk (2015) and have demonstrated that both the in-sample and out-of-sample
performance of the resulting models is excellent. While encouraging, it is worth re-
membering that the sizes of the school classes in our application range from 11 to 33,
different but similar. If the sizes of school classes were more dissimilar, the simple
size-adjusted parameterization we used may not be appropriate. However, more so-
phisticated size-adjusted parameterizations for curved ERGM terms are possible. In
particular, Krivitsky & Kolaczyk (2015) developed a size-adjusted parameterization
for the transitive edge term for undirected networks, which is equivalent to the undi-
rected, transitive GW term with decay parameter fixed at 0. It would be interesting
to investigate size-adjusted parameterizations for GW terms with unrestricted decay
parameters, although the fact that GW terms are nonlinear functions of products of
base and decay parameters requires a careful analysis of size-adjustments, which is
beyond the scope of our paper. Last, but not least, an interesting idea would be to
use network size as a covariate (Slaughter & Koehly, 2016). However, we do not ex-
pect a substantial improvement in in-sample and out-of-sample performance, because
our simple size-adjusted parameterization shows strong in-sample and out-of-sample
performance, in particular for triadic effects.

We provide a software implementation of the proposed models and methods in
the form of R package hergm, which supports parallel computing on multi-processor
computers and computing clusters. In the near future, we intend to split R package
hergm into two R packages:

• mlergm: ERGMs with known block structure (multilevel ERGMs with nodes
belonging to known blocks, with ties within and between blocks).

• hergm: ERGMs with unknown block structure (hierarchical ERGMs with nodes
belonging to unknown blocks, with ties within and between blocks).

Both of them will be released to https://cran.r-project.org (R Core Team, 2018).
The code we used here will be included in mlergm.
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A Maximum likelihood estimation of curved

ERGMs with missing data

One of the most appealing properties of MLEs is that, in the simplest case when
ERGMs do not contain curved ERGM terms and there are no missing data, MLEs
match the expected and observed values of the sufficient statistics: e.g., the MLE
of ERGMs with edge terms ensures that the expected number of edges equals the
observed number of edges. However, we are dealing here with curved ERGMs with
missing data, so the interpretation of MLEs is more complicated. We review here
some important implications.

To do so, let Xobs be the collection of all edge variables whose values are observed
and Xmis be the collection of all edge variables whose values are unobserved. By
definition, the MLE maximizes the probability of the observed network data xobs.
Maximizing the probability of the observed network data xobs is equivalent to solving

∇θ log pθ(xobs) = 0,

which in turn is equivalent to solving

∇θ log pθ(xobs) = Eθ [∇θ log pθ(xobs, Xmis) | Xobs = xobs]

= (∇θ η(θ))> Eθ [s(xobs, Xmis) | Xobs = xobs]

−
(
∇θ η(θ))> Eθ [s(Xobs, Xmis)]

)
= 0,

(2)

where the first line follows from a well-known missing-data identity dating back to
Fisher (1925) and Dempster et al. (1977) (see the discussion of Efron, 1977), while the
second line follows from exponential-family theory (Brown, 1986). Here, the expec-
tation Eθ [s(xobs, Xmis) | Xobs = xobs] is with respect to the conditional distribution of
Xmis given Xobs = xobs, the expectation Eθ [s(Xobs, Xmis)] is with respect to the joint
distribution of Xobs and Xmis, and (∇θ η(θ))> is the matrix of partial derivatives of
natural parameters ηi(θ) with respect to parameters θj.

Equation (2) implies that the MLE θ̂ ensures that

(∇θ η(θ)|θ=θ̂)> Eθ̂ [s(Xobs, Xmis)] = (∇θ η(θ)|θ=θ̂)> Eθ̂ [s(xobs, Xmis) | Xobs = xobs] .

To discuss the implications of the maximum likelihood equation shown above, consider
one of the sex-related sufficient statistics, the female outdegrees summed across all
school classes. Denote the sum of female outdegrees by si(xobs, xmis) and its natural
parameter by ηi(θ) = θi. The partial derivative of ηi(θ) with respect to θi is 1,
whereas the partial derivative of ηi(θ) with respect to θj is 0 for all j 6= i. As a
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consequence, the MLE ensures that the unconditional and conditional expectation of
female outdegrees match:

Eθ̂ [si(Xobs, Xmis)] = Eθ̂ [si(xobs, Xmis) | Xobs = xobs] .

When there were no missing data, the MLE matches the observed female outdegrees,
si(xobs):

Eθ̂ [si(Xobs)] = si(xobs). (3)

Otherwise, when there are missing data, it matches the conditional expectation of
female outdegrees given the observed network data, Eθ̂ [si(xobs, Xmis) | Xobs = xobs]:

Eθ̂ [si(Xobs, Xmis)] = Eθ̂ [si(xobs, Xmis) | Xobs = xobs] . (4)

Two remarks are in order.
First, the left-hand side of equations (3) and (4) is the same, but the right-hand

side is not: when there are missing data, the sufficient statistic – the sum of female
outdegrees across all school classes – cannot be computed, so it is replaced by a
conditional expectation of the sufficient statistic given the observed network data. In
other words, the sufficient statistic is averaged over all possible realizations of the
missing data, where the possible realizations of the missing data are weighed by the
conditional probabilities of the missing data given the observed network data.

Second, the female outdegrees are summed across all school classes, both school
classes without missing data and school classes with missing data, which has subtle
implications: the MLE matches the conditional expectation of the sum of female
outdegrees summed across all school classes, but there is no guarantee that it matches
the observed female outdegrees of school classes without missing data. To match
the observed female outdegrees of school classes without missing data, class-specific
female outdegree parameters would be needed. While it is possible to include class-
specific female outdegree parameters, the resulting models would have a large number
of parameters and would not be parsimonious, which would increase computational
costs (e.g., computing time) as well as statistical costs (e.g., standard errors).

By the same argument, the MLE matches the conditional expectation of the num-
ber of edges, mutual edges, female outdegrees, female indegrees, sex-matched edges,
and the number of students with outdegrees 1, . . . , 6. The GW terms are more com-
plicated: the MLE matches weighted sums of conditional expectations of the number
of configurations of the specified type. The weights are given by partial derivatives,
and most of the partial derivatives are neither 0 nor 1, because the natural parame-
ters of GW terms are nonlinear functions of products of parameters, and all natural
parameters of GW terms depend on the same two parameters (the base and decay
parameter).

Last, but not least, it is worth noting that we use Monte-Carlo based approx-
imations of MLEs (as explained in Section 4), because it is infeasible to compute
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exact MLEs. However, the arguments concerning the behavior of MLEs we presented
above also shed some light on the behavior of approximate MLEs, such as Monte
Carlo MLEs.

B Convergence

To assess whether the Monte Carlo maximum likelihood procedure converged, we used
trace plots of the sufficient statistics of the model, as is common practice (Hunter &
Handcock, 2006; Hunter et al., 2008; Hunter et al., 2008). We present trace plots of
the sufficient statistics of Model 4 in Figure 13. The trace plots for all other models
may be obtained from the authors upon request. None of these trace plots shows
signs of non-convergence. Trace plots of the other models are not shown, but those
trace plots do not show signs of non-convergence either.

Figure 13: Model 4: Trace plots of sufficient statistics of Model 4 with GW of type
OTP and estimated decay parameter. ESP1, ESP2, and ESP3 refer to the number of
pairs of students with 1, 2, and 3 edgewise shared partners of type OTP, respectively.
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Model 1 Model 2 Model 3 Model 4

No GW GW-OTP(0): GW-OTP(.25): GW-OTP(free):

θ3 Outdegree 1 −.930 (.074) ∗ ∗ ∗ −.116 (.074) .006 (.075) −.587 (.075) ∗ ∗ ∗
θ4 Outdegree 2 −.855 (.046) ∗ ∗ ∗ −.022 (.048) .503 (.049) ∗ ∗ ∗ .593 (.051) ∗ ∗ ∗
θ5 Outdegree 3 −.665 (.034) ∗ ∗ ∗ .137 (.038) ∗ ∗ ∗ .765 (.040) ∗ ∗ ∗ 1.362 (.044) ∗ ∗ ∗
θ6 Outdegree 4 −.603 (.032) ∗ ∗ ∗ .094 (.037) ∗ ∗ .731 (.039) ∗ ∗ ∗ 1.565 (.043) ∗ ∗ ∗
θ7 Outdegree 5 −.067 (.029) .487 (.034) ∗ ∗ ∗ 1.044 (.036) ∗ ∗ ∗ 1.920 (.040) ∗ ∗ ∗
θ8 Outdegree 6 −.797 (.046) ∗ ∗ ∗ −.409 (.047) ∗ ∗ ∗ .027 (.049) .790 (.051) ∗ ∗ ∗

Table 5: Monte Carlo maximum likelihood estimates, including standard errors, of
all outdegree parameters of Models 1–4. Monte Carlo maximum likelihood estimates
of all other parameters can be found in Table 2. Significance at levels .1, .05, and .001
is indicated by ∗, ∗∗, and ∗ ∗ ∗, respectively. A graphical representation of GW-OTP
is shown in Figure 5.

C Outdegree estimates

Tables 5 and 6 show Monte Carlo maximum likelihood estimates, including standard
errors, of the outdegree parameters of Models 1–4 and Models 5–8, respectively.

D In-sample performance of Models 1–8 in terms

of outdegrees

We present plots for assessing the in-sample performance of Models 1–8 in terms of
outdegrees in Figure 14.

E In-sample performance of Models 5–8 in terms

of DSP and ESP

Figures 16 and 15 show the in-sample performance of Models 5–8 with GW terms of
types OSP, ISP, RTP and ITP in terms of DSP and ESP statistics of types OSP, ISP,
RTP and ITP.
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Model 5 Model 6 Model 7 Model 8

GW-OSP GW-ISP GW-RTP GW-ITP

θ3 Outdegree 1 −.768 (.075) ∗ ∗ ∗ −1.196 (.076) ∗ ∗ ∗ −1.239 (.076) ∗ ∗ ∗ −1.344 (.075) ∗ ∗ ∗
θ4 Outdegree 2 .270 (.050) ∗ ∗ ∗ −.101 (.053) ∗ −.633 (.047) ∗ ∗ ∗ −.919 (.051) ∗ ∗ ∗
θ5 Outdegree 3 1.010 (.044) ∗ ∗ ∗ .807 (.048) ∗ ∗ ∗ −.045 (.039) −.451 (.042) ∗ ∗ ∗
θ6 Outdegree 4 1.248 (.043) ∗ ∗ ∗ 1.267 (.049) ∗ ∗ ∗ .246 (.038) ∗ ∗ ∗ −2.180 (.041) ∗ ∗ ∗
θ7 Outdegree 5 1.654 (.040) ∗ ∗ ∗ 1.885 (.046) ∗ ∗ ∗ .832 (.035) ∗ ∗ ∗ .411 (.037) ∗ ∗ ∗
θ8 Outdegree 6 .577 (.053) ∗ ∗ ∗ .956 (.055) ∗ ∗ ∗ −.015 (.049) −.321 (.049) ∗ ∗ ∗

Table 6: Monte Carlo maximum likelihood estimates, including standard errors, of
all outdegree parameters of Models 5–8. Monte Carlo maximum likelihood estimates
of all other parameters can be found in Table 3. Significance at levels .1, .05, and
.001 is indicated by ∗, ∗∗, and ∗ ∗ ∗, respectively. Graphical representations of GW
terms of types OSP, ISP, RTP, and ITP are shown in Figure 5.

Model 1 Model 2 Model 3 Model 4

No GW GW-OTP(0) GW-OTP(.25) GW-OTP(free)

Model 5 Model 6 Model 7 Model 8

GW-OSP GW-ISP GW-RTP GW-ITP

Figure 14: In-sample performance of Models 1–8 in terms of outdegrees. The red
curves indicate the conditional expectations of the outdegrees given the observed
data.
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Model 5 Model 6 Model 7 Model 8

GW-OSP GW-ISP GW-RTP GW-ITP

Figure 15: In-sample performance of Models 5–8 with GW terms of types OSP, ISP,
RTP, and ITP in terms of DSP statistics of types OSP, ISP, RTP, and ITP. The red
curves indicate the conditional expectations of the DSP statistics given the observed
data.
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Model 5 Model 6 Model 7 Model 8

GW-OSP GW-ISP GW-RTP GW-ITP

Figure 16: In-sample performance of Models 5–8 with GW terms of types OSP, ISP,
RTP, and ITP in terms of ESP statistics of types OSP, ISP, RTP, and ITP. The red
curves indicate the conditional expectations of the ESP statistics given the observed
data.
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