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Local dependence random graph models are a class of block models for network data which allow for dependence
among edges under a local dependence assumption defined around the block structure of the network. Since being
introduced by Schweinberger and Handcock (2015), research in the statistical network analysis and network sci-
ence literatures have demonstrated the potential and utility of this class of models. In this work, we provide the
first theory for estimation and inference which ensures consistent and valid inference of parameter vectors of local
dependence random graph models. This is accomplished by deriving convergence rates of estimation and inference
procedures for local dependence random graph models based on a single observation of the graph, allowing both
the number of model parameters and the sizes of blocks to tend to infinity. First, we derive non-asymptotic bounds
on the ✓2-error of maximum likelihood estimators with convergence rates, outlining conditions under which these
rates are minimax optimal. Second, and more importantly, we derive non-asymptotic bounds on the error of the
multivariate normal approximation. These theoretical results are the first to achieve both optimal rates of conver-
gence and non-asymptotic bounds on the error of the multivariate normal approximation for parameter vectors of
local dependence random graph models.

Keywords: Local dependence random graph model; minimax bounds; multivariate normal approximation;
network data; statistical network analysis

1. Introduction

Local dependence random graph models, introduced by Schweinberger and Handcock (2015), are a
class of statistical models for network data built around block structure, where a population of nodes
N, which we take without loss to be NB {1, . . . ,#} (# � 3), is partitioned into  2 {1,2, . . .} subsets
A1, . . . ,A called blocks (also referred to as communities or subpopulations within the literature).
The class owes its name to the fundamental assumption that dependence among edges is constrained
to block-based subgraphs. We formally review local dependence random graph models in Section 1.1.

There are two key aspects to local dependence random graph models which help to explain the re-
search interest received in both the statistical network analysis and network science literatures (Stewart
et al., 2019, Schweinberger and Stewart, 2020, Babkin et al., 2020, Whetsell, Kroll and Dehart-Davis,
2021, Mele, 2022, Dahbura et al., 2021, Agneessens, Trincado-Munoz and Koskinen, 2024, Dahbura
et al., 2023, Tolochko and Boomgaarden, 2024). First, block structure (or community structure) is a
well-established structural phenomena relevant to many applications and networks encountered in our
world (e.g., Holland, Laskey and Leinhardt, 1983, Newman and Girvan, 2004, Stewart et al., 2019). Sec-
ond, local dependence random graph models possess desirable properties and behavior that circumvent
early difficulties in constructing models of edge dependence, which include producing non-degenerate
models of edge dependence (including transitivity) and consistency results for estimators (Schwein-
berger and Handcock, 2015, Schweinberger and Stewart, 2020).
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Utilization of local dependence random graph models requires knowledge or estimates of both the
block memberships of the nodes in the network, as well as the parameters of interest which determine
the amount of probability mass placed on different configurations of the network. In practice, the
parameter vectors of local dependence random graph models must always be estimated, whereas the
block memberships of nodes can either be observed as part of the observation process (Stewart et al.,
2019, Schweinberger and Stewart, 2020), or can be estimated (Babkin et al., 2020, Schweinberger,
2020). We will focus on the problem of estimating parameter vectors under the assumption that the
block memberships of nodes have either been observed as part of the observation process or have been
estimated.

In this work, we advance the literature on local dependence random graph models by providing the
first statistical theory which elaborates conditions under which estimation and inference methodology
based on a single observation of the graph can be expected to produce consistent and valid inference
of parameter vectors of local dependence random graph models. The main results are non-asymptotic
and cover settings where the number of model parameters and the sizes of the blocks tend to infinity.
The main contributions of this work include:

1. Establishing the first non-asymptotic bounds on the ✓2-error of maximum likelihood estimators of
parameters vectors of local dependence random graph models which hold with high probability,

2. Outlining conditions under which the rates of convergence implied by the bounds on the ✓2-error
of maximum likelihood estimators are minimax optimal, and

3. Deriving the first non-asymptotic bound on the error of the multivariate normal approximation of
a standardization of maximum likelihood estimators.

All results are stated in terms of interpretable quantities, allowing us to quantify the effect of key
aspects of the statistical model and network structure upon convergence rates of the aforementioned
errors. In so doing, we introduce the first principled approach to estimation and inference for local
dependence random graph models by developing theoretical results which achieve both optimal rates
of convergence and non-asymptotic bounds on the error of the multivariate normal approximation of
maximum likelihood estimators.

1.1. Local dependence random graph models

We consider simple, undirected random graphs ^ 2 X B {0,1}
�#

2
�

which are defined on the set of
nodes NB {1, . . . ,#} (# � 3). Edge variables between pairs of nodes {8, 9} ⇢ N are given by

-8, 9 =

(
1 Nodes 8 and 9 are connected in the graph
0 Otherwise,

assuming throughout that -8, 9 = - 9 ,8 ({8, 9} ⇢ N) and -8,8 = 0 (8 2N).
A local dependence random graph (Schweinberger and Handcock, 2015) is a random graph ^ where

the set of nodes N is partitioned into  blocks A1, . . . ,A with probability distributions P of the form

P(^ = x) =
÷

1:; 
P: ,; (^: ,; = x: ,;), x 2X, (1)
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Sampson's monastery network School classes network Bali terrorist network

Figure 1. Three real data examples of networks for which local dependence random graph models would be appli-
cable, including Sampson’s monastery network, the school classes data set from Stewart et al. (2019), and the Bali
terrorist network studied in Schweinberger and Handcock (2015). Node colors correspond to block memberships.

where the subgraphs ^: ,; (1  :  ;   ) are defined as follows:

^: ,; B

8>>>>><
>>>>>:

(-8, 9 ){(8, 9) : 8< 9 , 82A: , 92A: } 2 X: ,: B {0,1}
� |A: |

2
�

if : = ;

(-8, 9 ){(8, 9) : 82A: , 92A; } 2 X: ,; B {0,1} |A: | |A; | if : < ; .

We refer to the subgraphs ^: ,: (1  :   ) as the within-block subgraphs and to the subgraphs ^: ,;

(1  : < ;   ) as the between-block subgraphs. The probability distribution P: ,; is the marginal
probability distribution of the subgraph ^: ,; (1  :  ;   ). A local dependence random graph model

is any probability distribution P for ^ of the form (1). Figure 1 visualizes three networks which can be
studied using local dependence random graph models. While the collection of block-based subgraphs
^: ,; (1  :  ;   ) are independent, edges within the same block-based subgraph can be dependent.
The joint distribution P can be specified by specifying the marginal probability distributions P: ,; for
the block-based subgraphs ^: ,; (1  :  ;   ).

It is worth noting that the block memberships are known in both Sampson’s monastery network and
the school classes network visualized in Figure 1, whereas the block memberships of the Bali terrorist
network were estimated as in Schweinberger and Handcock (2015). When the block memberships cor-
respond to tangible and observable quantities (e.g., school class memberships of students), data on the
block memberships can be collected as part of the observation process. When this is not possible, the
block memberships must be estimated, for example by using the two-step estimation methodology of
Babkin et al. (2020), which estimates both the block memberships of nodes and the parameter vectors
of local dependence random graph models.

Exponential families account for the most prevalent specifications of local dependence random graph
models (e.g., Schweinberger and Handcock, 2015, Stewart et al., 2019, Dahbura et al., 2021, Schubert
and Brand, 2022, Tolochko and Boomgaarden, 2024), indeed having been the statistical foundations for
the class in the seminal work by Schweinberger and Handcock (2015). Moreover, exponential families
provide a flexible statistical platform for constructing models of edge dependence in network data ap-
plications (Lusher, Koskinen and Robins, 2012, Schweinberger et al., 2020), and have been shown to be
possess desirable statistical properties in local dependence random graph models, including the consis-
tency of maximum likelihood estimators of canonical and curved exponential families (Schweinberger



4

and Stewart, 2020). An exponential-family local dependence random graph model can be specified via
the marginal probability distributions of the block-based subgraphs:

P: ,;,):,; (^: ,; = x: ,;) = ⌘: ,; (x: ,;) exp
�
h): ,; , B: ,; (x: ,;)i � k: ,; (): ,;)

�
, (2)

defined for each x: ,; 2X: ,; , where

• B: ,; :X: ,; 7!R?:,; is a vector of sufficient statistics;

• ): ,; 2R?:,; is the natural parameter vector;

• ⌘: ,; :X: ,; 7! [0,1) is the reference function of the exponential family; and

• k: ,; (): ,;) = log
Õ

v2X:,;
⌘: ,; (v) exp(h): ,; , B: ,; (v)i) is the log-normalizing constant.

It is straightforward to show that exponential family specifications of the marginal probability distribu-
tions of the within-block and between-block subgraphs will lead to a joint distribution which is also an
exponential family.

A diverse range of models with the local dependence property in (1) can be constructed through
different specifications of the sufficient statistics and reference functions. To allow for a general scope
of well-structured models, we assume that the joint distributions of ^ take the form

P) (^ = x) =
÷

1:; 
P: ,;,):,; (^: ,; = x: ,;) = ⌘(x) exp (h) , B(x)i � k())) , (3)

where ) = (), , )⌫) 2R?+@ and B(x) = (B, (x, ), B⌫ (x⌫)) 2R?+@ , with the definitions

x, B (x1,1, . . . , x , ), x⌫ B (x1,2, . . . , x1, , x2,3, x2,4, . . . , x �1, ),

⌘(x) B
÷

1:; 
⌘: ,; (x: ,;), and k()) B

 ’
:=1

k: ,: (), ) +
’

1:<; 
k: ,; ()⌫).

Throughout, we will assume that ? = dim(), ) and @ = dim()⌫). The exponential family is then the
set of probability distributions {P) : ) 2 R?+@}, where we note that the natural parameter space is
equal to R?+@ , a fact which follows trivially due to the fact that the support X of ^ is a finite set. We
additionally assume throughout this work that the exponential family implied by (3) is minimal. While
the product of the block-based subgraph distributions in (2) will form an exponential family, it may
not be minimal, in which case we assume that the representation in (3) is the minimal representation
of the exponential family obtained through reduction by sufficiency, reparameterization, and proper
choice of reference measure; see Proposition 1.5 of Brown (1986). The assumption that an exponential
family is minimal is not restrictive, as any non-minimal exponential family can be reduced to a minimal
exponential family (Proposition 1.5, Brown, 1986).

We next provide examples of exponential-family local dependence random graph models in order
to motivate the broad scope of this class of models, as well as to demonstrate how to construct local
dependence random graph models. As the scope of possible models that can be constructed is large,
we are unable to present a complete primer on the topic, and refer to works by Schweinberger and
Handcock (2015), Stewart et al. (2019), and Schweinberger and Stewart (2020), for further information
on and concrete examples of exponential-family local dependence random graph models.
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1.2. Examples of exponential-family local dependence random graph models

1.2.1. Example 1: The stochastic block model

As a first example, we review the stochastic block model (Holland, Laskey and Leinhardt, 1983), which
is a special case of a local dependence random graph model. The joint distribution for ^ is given by

P) (^ = x) /
266664
 ÷
:=1

÷
8< 9 : 8, 92A:

exp(\: ,: G8, 9 )
377775
266664

÷
1:<; 

÷
(8, 9)2A:⇥A;

exp(\: ,; G8, 9 )
377775

/ exp ©≠
´
 ’
:=1

\: ,:
’

8< 9 : 8, 92A:

G8, 9 +
’

1:<; 
\: ,;

’
(8, 9)2A:⇥A;

G8, 9
™Æ
¨
,

(4)

where \: ,; 2R (1  :  ;   ). The second line of (4) implies the minimal exponential family, where
each block-based subgraph is a collection of independent and identically distributed Bernoulli random
variables whose edge probability depends on the subgraph index (: , ;) and the value of \: ,; 2R.

1.2.2. Example 2: Transitivity in local dependence random graphs

The second example we present captures stochastic tendencies towards edge transitivity in networks,
by including a sufficient statistic which models the stochastic tendency for an edge in the network to
belong to a triangle. For this example, we consider joint distributions {P) : ) 2R3} for ^ of the form

P) (^ = x) / exp
�
\1 B1 (x) + \2 B2 (x) + \3 B3 (x)

�
,

with natural parameters (\1, \2, \3) 2R3, and where the sufficient statistics are given by

B1 (x) =
 ’
:=1

’
8< 9 : 8, 92A:

G8, 9

B2 (x) =
 ’
:=1

’
8< 9 : 8, 92A:

G8, 9
©≠
´

’
⌘2A:\{8, 9 }

G8,⌘ G 9 ,⌘ � 1™Æ
¨

B3 (x) =
’

1:<; 

’
(8, 9)2A:⇥A;

G8, 9 .

In words, B1 (x) counts the number of edges in each of the within-block subgraphs x: ,: (1  :   ),
whereas B3 (x) counts the number of edges in each of the between-block subgraphs x: ,; (1  : < ;   ).
Neither of these statistics induce dependence, as when \2 = 0, the joint distribution will factorize with
respect to the edge variables in the graph, implying edges are independent.

The second sufficient statistic induces dependence among edge variables contained in the same
within-block subgraph, noting that the form of the statistic in B2 (x) ensures that distributions will
not factorize with respect to the edge variables within the graph when \2 < 0. The second statistic
B2 (x) counts the number of edges G8, 9 between pairs of nodes 8 and 9 belonging to a common block
A: , which are also mutually connected to at least one other node ⌘ 2 A: also belonging to the same
common block, i.e., it counts the number of within-block edges which form at least one triangle within
the respective block-based subgraph. We call such edges transitive edges.
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Motivation for taking this approach to constructing models of edge dependence lies in foundational
properties of exponential families. The mean-value parameter map of the exponential family is given by
-()) B E) (B1 (^), B2 (^), B3 (^)) (p. 73–74, Brown, 1986), mapping the natural parameter space R3

to the interior of the convex hull of the image ofX under the vector of sufficient statistics B :X 7!R3:

-()) 2 M B int
⇣
ConHull

⇣�
B(x) 2R3 : x 2X

 ⌘⌘
,

where ConHull(S) represents the convex hull of the set S. Moreover, for a minimal exponential family
(of which this example is), the map - :R3 7!M defines a homeomorphism between R3 andM (The-
orem 3.6, Brown, 1986). This last point emphasizes a key modeling aspect of exponential-family local
dependence random graph models, as for any point u 2M parameterizing the expected values (mean
values) of the sufficient statistics (B1 (^), B2 (^), B3 (^)), we are guaranteed to be able to find a natural
parameter vector ) 2R3 for whichE) (B1 (^), B2 (^), B3 (^)) = u, allowing specified models to flexibly
capture average tendencies of networks, including density, transitivity, and much more.

1.2.3. Example 3: Incorporating node and block heterogeneity into models

The third example shows how we are able to incorporate heterogeneous parameterizations for blocks,
as well as for the stochastic propensities of different nodes to form edges, demonstrating ways in which
the dimension of parameter vectors can grow in applications. For ease of presentation, we will build on
Example 2 by extending the sufficient statistics which were specified in that example.

First, we will demonstrate how heterogeneity in node degrees can be incorporated into models. Sup-
pose that nodes are divided into " non-overlapping groups or categories {1, . . . ,"} which we repre-
sent as sets G1, . . . ,G" . Note that these are distinct from the blocks A1, . . . ,A . In applications, these
groups might be ranks in a department, gender, race, or any other categorical covariate which can be
observed and treated as fixed. As such, each block may be comprised of different amount of nodes from
each of the groups G1, . . . ,G" , an example of which is the school classes data set studied in Stewart
et al. (2019), where each school class was comprised of different numbers of male and female students.

We replace B1 (x) in Example 2 by multiple sufficient statistics:

B< (x) =
 ’
:=1

’
82G<\A:

’
92A:\{8 }

G8, 9 , < 2 {1, . . . ,"},

with natural parameters (\1, . . . , \" ) 2R" . A version of this statistic is implemented in the R package
ergm under the name nodefactor (Krivitsky et al., 2023). In words, the model includes a sufficient
statistic that, based on the value of the corresponding natural parameter, adjusts the baseline propensity
for within-block edge formation involving nodes in that group. With no other sufficient statistics in the
model, the log-odds of an edge would be given by

log
P) (-8, 9 = 1)
P) (-8, 9 = 0) = \< + \=, 8 2 G< \A: , 9 2 G= \A: , : 2 {1, . . . , }.

This is reminiscent of the ?1 model (Holland and Leinhardt, 1981) and the V-model (Chatterjee, Dia-
conis and Sly, 2011), in which each node is given its own distinct class.

We now show how heterogeneity can arise in the block-based subgraphs, by allowing different pa-
rameterizations for different blocks. The statistic B2 (x) in Example 2 counts the number of transitive
edges in each within-block subgraph ^: ,: (1  :   ), using the same parameter for each within-block
subgraph. It may be that different blocks display different tendencies towards transitivity. To make this
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concrete, suppose that the individual blocks {1, . . . , } are partitioned into ! groups or categories
H1, . . . ,H! . We then replace the sufficient statistic B2 (x) in Example 2 by multiple statistics:

B"+; (x) =
’
:2H;

’
8< 9 : 8, 92A:

G8, 9
©≠
´

’
⌘2A:\{8, 9 }

G8,⌘ G 9 ,⌘ � 1™Æ
¨
, ; 2 {1, . . . , !},

with natural parameters (\"+1, . . . , \"+!) 2R! . The complete model is given by

P) (^ = x) / exp

 
"+!+1’
C=1

\C BC (x)
!
,

with natural parameter space R"+!+1, where the last sufficient statistic is equal to

B"+!+1 (x) =
’

1:<; 

’
(8, 9)2A:⇥A;

G8, 9 .

Example 3 helps to demonstrate how the number of model parameters can grow quickly in applications
when significant generality, heterogeneity, or adaptability is needed to capture important aspects of the
application. A version of Example 3 will be used in the simulation studies conducted in Section 3.

2. Theoretical guarantees

Our main theoretical results are presented in this section. We first review exponential family theory
for local dependence random graph models in Section 2.1. Our consistency theory is then presented in
Section 2.2. Section 2.2.1 derives rates of convergence in the ✓2-norm of maximum likelihood estima-
tors, whereas Section 2.2.2 presents bounds on the minimax risk in the ✓2-norm which help to establish
the minimax optimality (under mild conditions) of the upper bounds presented in Section 2.2.1. Lastly,
but importantly, rates of convergence of the error of the multivariate normal approximation are ob-
tained in Section 2.3, providing both non-asymptotic and asymptotic theory for multivariate normal
approximations of maximum likelihood estimators of local dependence random graph models.

Due to space restrictions, all proofs are presented in the supplement (Stewart, 2024).

2.1. Preliminaries for exponential families

The log-likelihood of an exponential-family local dependence random graph model is

✓() , x) B log P) (^ = x) =
 ’
:=1

✓: ,: (), , x: ,: ) +
’

1:<; 
✓: ,; ()⌫, x: ,;),

where

✓: ,: (), , x: ,: ) B h), , B: ,: (x: ,: )i � k: ,: (), ) + log ⌘: ,: (x: ,: )

✓: ,; ()⌫, x: ,;) B h)⌫, B: ,; (x: ,;)i � k: ,; ()⌫) + log ⌘: ,; (x: ,;).
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The gradient r) ✓() , x) = (r), ✓() , x),r)⌫ ✓() , x)) is given by

r), ✓() , x) =
 ’
:=1

⇥
B: ,: (x: ,: ) �E: ,: ,), B: ,: (^: ,: )

⇤

r)⌫ ✓() , x) =
’

1:<; 

⇥
B: ,; (x: ,;) �E: ,;,)⌫ B: ,; (^: ,;)

⇤
,

where E: ,: ,), and E: ,;,)⌫ are the expectation operators with respect to the marginal probability
distributionsP: ,: ,), of ^: ,: andP: ,;,)⌫ of ^: ,; , respectively (Lemma 6.1, Stewart, 2024). We denote
the set of maximum likelihood estimators for a given observation x 2X by

b⇥ ⌘ b⇥(x) B
⇢
)
0 2R?+@ : ✓() 0, x) = sup

)2R?+@
✓() , x)

�
.

For minimal and regular exponential families, the maximum likelihood estimator exists uniquely when
it is exists, i.e., |b⇥| 2 {0,1} (Proposition 3.13, Sundberg, 2019). Regarding existence, the maximum
likelihood estimator of natural parameter vectors of minimal exponential families exists when the suffi-
cient statistic vector falls within the interior of the mean-value parameter space (Theorem 5.5., p. 148,
Brown, 1986), in which case there exists a parameter vectorb) 2R?+@ for which -(b)) = B(x) for a given
observation x 2X of the random graph ^, defining -()) B E) B(^) to be the mean-value parameter
map (p. 73–74, Brown, 1986).

In practice, computing maximum likelihood estimators is not straightforward, as the log-normalizing
constants are generally computationally intractable unless the marginal probability distributions of the
block-based subgraphs ^: ,; (1  :  ;   ) are assumed to factorize further to reduce the computa-
tional burden of computing the normalizing constants, because k: ,: (), ) involves the summation of� |A: |

2
�

terms and k: ,; ()⌫) involves the summation of |A: | |A; | terms. It becomes infeasible to compute
these summations in practice even for modest block sizes. The prevailing method for estimating expo-
nential families of random graph models is Monte-Carlo maximum likelihood estimation (MCMLE)
(Hunter and Handcock, 2006). The algorithm outlined in Hunter and Handcock (2006) applies directly
to exponential-family local dependence random graph models (Stewart and Schweinberger, 2019, Stew-
art et al., 2019, Schweinberger and Stewart, 2020), and is used in the simulation studies conducted in
Section 3 through the implementation in the R package mlergm (Stewart and Schweinberger, 2019).

We summarize the key aspects of MCMLE with exponential families of random graph models out-
lined in Hunter and Handcock (2006). The essential idea of MCMLE is to approximate intractable
likelihood functions with stochastic approximations utilizing Markov Chain Monte Carlo (MCMC)
methods. The crux of the methodology rests on a simple approximation of normalizing constants via
importance sampling. To introduce the idea, let )0 2 R?+@ be a fixed parameter vector in the natural
parameter space of an exponential-family local dependence random graph model. We can equivalently
find maximum likelihood estimators b) of )¢ by

b) = arg max
)2R?+@

[✓() , x) � ✓()0, x)] = arg max
)2R?+@

[h) � )0, B(x)i � log (exp (k()) � k()0)))] .

In order to solve the above optimization problem, we need to be able to approximate the gradient
corresponding to the above objective function, which is given by

r) [✓() , x) � ✓()0, x)] = B(x) � r) log (exp (k()) � k()0))) . (5)

The intractability of the normalizing constants in (5) makes direct computation infeasible, as discussed.
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We approximate the term exp (k()) � k()0)) via a change of measure argument:

exp (k()) � k()0)) = exp(�k()0))
’
x2X

⌘(x) exp(h) , B(x)i)

= exp(�k()0))
’
x2X

⌘(x) exp(h) , B(x)i) exp(h)0, B(x)i)
exp(h)0, B(x)i)

= E)0 exp(h) � )0, B(^)i),

where E)0 is the expectation operator corresponding to P)0 . As a result, if we can approximate the
expectation E)0 exp(h) � )0, B(^)i) via Monte Carlo methods, then we can approximate the ratio of
normalizing constants exp (k()) � k()0)). A key advantage of this approach lies in the fact that the
expectation is taken with respect to a fixed distribution P)0 . In general, we will not be able to sample
directly from the distributions and will need to rely on MCMC sampling methods (see, e.g., Snijders,
2002, Krivitsky et al., 2023). Let ê1, . . . , ê= be an MCMC sample from P)0 . Then, returning to (5),
we have the following approximation:

r) [✓() , x) � ✓()0, x)] ⇡ B(x) � r) log

 
1
=

=’
8=1

exp (h) � )0, B(ex8)i)
!

= B(x) �
=’
8=1

 
exp (h) � )0, B(ex8)i)Õ=
9=1 exp

�
h) � )0, B(ex 9 )i�

!
B(ex8).

Using this approximation, root finding algorithms—such as stochastic gradient descent or Fisher scor-
ing algorithms—can be utilized to find the MCMLE approximation to the MLE; Hunter and Handcock
(2006) outlines a stochastic Fisher scoring algorithm. The convergence of the MCMLE to the MLE de-
pends on the convergence of the exact log-likelihood to the stochastic approximation (see, e.g., discus-
sions in Geyer and Thompson, 1992), which will depend upon properties of the Markov chain utilized to
generate sample networks. In the usual implementations (e.g., Krivitsky et al., 2023), these chains will
be geometrically mixing toward the target sampling distribution and will provide good approximations
provided sufficient computational resources have been expended. As a final point on the computa-
tional complexity, different model specifications, implementations of MCMC methodology, and block
structures will have different mixing times and thus will require differing amounts of computational
resources. With regards to scalability, access to parallel computing presents a significant opportunity
to improve computation times by exploiting the independence of the block-based subgraphs to paral-
lelize simulation; see discussions in Babkin et al. (2020), which analyzed networks with over 10,000
nodes utilizing parallel computing and an implementation of the stochastic Fisher scoring algorithm of
Hunter and Handcock (2006) in the R package mlergm (Stewart and Schweinberger, 2019).

2.2. Convergence rates of maximum likelihood estimators

We derive non-asymptotic bounds on the ✓2-error of maximum likelihood estimators which hold with
high probability. Our results extend those of Schweinberger and Stewart (2020), who derived consis-
tency results for maximum likelihood estimators of canonical and curved exponential-family local de-
pendence random graph models, but did not report rates of convergence. Additionally, Schweinberger
and Stewart (2020) focused on estimation of only the within-block parameter vectors ), . In contrast,
we establish consistency theory with rates of convergence for entire parameter vectors (), , )⌫) of
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exponential-family local dependence random graph models, covering settings where the number of
model parameters and sizes of blocks may tend to infinity, at appropriate rates. The consistency theory
in this work is related to—but distinct from—the results in Stewart and Schweinberger (2020), who
prove a general theorem for establishing consistency and rates of convergence of maximum likelihood
and pseudolikelihood-based estimators of random graph models with dependent edges with respect to
the ✓1-norm under a more general weak dependence assumption. First, we focus specifically on local
dependence random graph models and quantify rates of convergence in the ✓2-norm for this class of
models and in terms of interpretable quantities related to local dependence random graphs, namely
properties of the block structure, graph, and model. Second, our method of proof is fundamentally dif-
ferent from that of both Schweinberger and Stewart (2020) and Stewart and Schweinberger (2020), and
the consistency theory in this work cannot be proved as a corollary to an existing result.

We outline some notational definitions and regularity assumptions for our theorems to follow, subse-
quently discussing each in turn. Let B2 (v, A) B {v0 2Rdim(v) : ||v0 � v ||2 < A} be the open ✓2-ball with
center v and radius A > 0 and denote by _min (G) and _max (G) the smallest and largest eigenvalues,
respectively, of the matrix G 2 R3⇥3 . We write 0# = $ (1# ) when there exists a constant ⇠ > 0 and
integer #0 � 1 such that 0#  ⇠ 1# for all # � #0, and write 0# = >(1# ) when there exists, for all
X > 0, an integer #0 (X) � 1 such that 0#  X 1# for all # � #0 (X).

Assumption 1. Assume there exist ⇠, > 0 and ⇠⌫ > 0, independent of # , ?, and @, such that

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
, : 2 {1, . . . , },

sup
x:,; 2X:,;

||B: ,; (x: ,;) ||1  ⇠⌫ |A: | |A; |, {: , ;} ✓ {1, . . . , }.

Assumption 2. Assume there exists n > 0, independent of # , ?, and @, such that

e_nmin,, B inf
)2B2 ()¢,n )

_min

⇣
�Er2

),
✓() , ^)

⌘
 

> 0

e_nmin,⌫ B inf
)2B2 ()¢,n )

_min

⇣
�Er2

)⌫
✓() , ^)

⌘
� 

2
� > 0.

Assumption 3. Define �avg B  �1 Õ 
:=1 |A: | to be the average block size and

e_¢max,, B
_max

⇣
�Er2

),
✓()¢, ^)

⌘
 

and e_¢max,⌫ B
_max

⇣
�Er2

)⌫
✓()¢, ^)

⌘
� 

2
� ,

and assume that

p
�avg

qe_¢max,,

e_nmin,,

= >

✓r
#

?

◆
and �avg

qe_¢max,⌫

e_nmin,⌫

= >
©≠
´

s
#2

@
™Æ
¨
.

Assumption 4. Assume the largest block size �max B max{|A1 |, . . . , |A |} satisfies

�max  min
8>><
>>:

 
# e_¢max,,

�avg ?2

!1/4

,

 
#2 e_¢max,⌫

4 �2
avg @2

!1/4 9>>=
>>;
.



Rates of convergence for local dependence random graph models 11

Remark 1 (Discussion of Assumption 1). We place a restriction on the scaling of the block-based
sufficient statistic vectors with respect to the sizes of the blocks. The need for this arises out of a need
to derive concentration inequalities for gradients of the log-likelihood, as well as a need to control
third-order derivatives of the log-likelihood function in our method of proof for deriving bounds on the
error of the multivariate normal approximation. The assumption is natural, as it essentially requires that
the values of the sufficient statistics possess an upper-bound which is proportional to the number of
edge variables in each of the respective block-based subgraphs. An example of interest is the transitive
edge count statistic of a within-block subgraph ^: ,: , discussed also in in Section 1.2, given by

’
8< 9 : 8, 92A:

G8, 9
©≠
´

’
⌘2A:\{8, 9 }

G8,⌘ G 9 ,⌘ � 1™Æ
¨


’

8< 9 : 8, 92A:

G8, 9 
✓ |A: |

2

◆
,

which can be viewed as a special case of the geometrically-weighted edgewise shared partner statistic
(Hunter and Handcock, 2006, Stewart et al., 2019). To further contextualize this assumption, it is helpful
to note that Assumption 1 is related to the issue of instability of exponential-families of random graph
models (Schweinberger, 2011). Maximal changes in the sufficient statistic vectors B: ,: (x) (1  :   )
and B: ,; (x) (1  : < ;   ) due to changing the value of a single edge in x are defining characteris-
tics of instability in exponential-family random graph models, in the sense of Schweinberger (2011).
Assumption 1 implies limitations on the sensitivity of the sufficient statistic vectors to changes in the
edges in the graph. Understanding this connection helps to explain why local dependence random graph
models achieve statistical behavior and properties not achieved in early—but flawed—statistical models
of edge dependence in network data (Häggström and Jonasson, 1999, Jonasson, 1999, Schweinberger,
2011, Chatterjee and Diaconis, 2013). Lastly, it is worth noting that Assumption 1 could be relaxed
further, allowing for a larger upper bound. The result of this, however, would be looser upper-bounds
on the ✓2-error and slower rates of convergence.

Remark 2 (Discussion of Assumption 2). Assumption 2 places a restriction on the scaling of the
smallest eigenvalue of the joint Fisher information matrix by placing an assumption on the scaling of
the smallest eigenvalue of the Fisher information matrices �Er2

),
✓() , ^) and �Er2

)⌫
✓() , ^) corre-

sponding to the within-block and between-block probability distributions, respectively, in a neighbor-
hood B2 ()¢, n) of the data-generating parameter vector )¢ = ()¢, , )¢⌫). The local dependence assump-
tion and the assumption that the parameter vector ) = (), , )⌫) 2R?+@ partitions the within-block and
between-block parameters implies that the joint Fisher information matrix �Er2

) ✓() , ^) has the form

�Er2
) ✓() , ^) = ©≠

´
�Er2

),
✓() , ^) 0?,@

0@,? �Er2
)⌫
✓() , ^)

™Æ
¨
,

where 0<,= is the (< ⇥ =)-dimensional matrix of all zeros. Assumption 2 essentially assumes that the
Fisher information matrices are invertible in a neighborhood of the data-generating parameter vector.
Minimum eigenvalue restrictions of Fisher information matrices are standard in settings where the
number of model parameters may tend to infinity (e.g., Portnoy, 1988, Ravikumar, Wainwright and
Lafferty, 2010, Janková and van de Geer, 2018). Notably, our assumption represents a restriction on
what amounts to an average minimum eigenvalue (averaged over the block-based quantities in both
the within-block and between-block cases). To understand why we have adopted this definition in our
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assumptions (relevant also to Assumption 3), instead of placing a restriction on the minimum eigen-
value of the Fisher information matrices corresponding to each block-based subgraph, observe through
Weyl’s inequality, the bound

_min

⇣
�Er2

),
✓() , ^)

⌘
�

 ’
:=1

_min

⇣
�Er2

),
✓: ,: (), , ^: ,: )

⌘

�  

✓
min

:2{1,..., }
_min

⇣
�Er2

),
✓: ,: (), , ^: ,: )

⌘◆
.

If certain subgraphs do not contain any information about certain subsets of parameters, possibly due
to heterogeneous parameterizations that allow different blocks to have different parameters, then it
may be the case that _min (�Er2

),
✓: ,: (), , ^: ,: )) = 0 for some : 2 {1, . . . , } due to singularity.

As a result and in order to cover more general settings and heterogeneous parameterizations, we place
our minimum eigenvalue restriction on the scaling of the averaged smallest eigenvalue of joint Fisher
information matrices.

Remark 3 (Discussion of Assumption 3). Assumption 3 places a regularity assumption on three key
quantities, the average block size �avg B  �1 Õ 

:=1 |A: |, the average minimum eigenvalues of Fisher
information matrices e_nmin,, and e_nmin,⌫ in a neighborhood of the data-generating parameter vector
)
¢ = ()¢, , )¢⌫) (defined in Assumption 2), and the average maximum eigenvalues of Fisher information

matrices e_¢max,, and e_¢max,⌫ at the data-generating parameter vector. As will be seen in Theorem 2.1,
Assumption 3 essentially outlines a scaling requirement of these three quantities (in their respective
cases) which ensures consistent estimation under Theorem 2.1, in the sense that the upper bounds on
the ✓2-error in Theorem 2.1 will tend to zero as the size of the network # tends to infinity. As such,
Assumption 3 can be viewed as a minimal information criterion which requires that we obtain sufficient
information about the parameter vector ()¢, , )¢⌫) from an observation of the random graph ^.

Remark 4 (Discussion of Assumption 4). In our method of deriving concentration inequalities, we
bound factors involving the influence of edge variables in the random graph by the size of the largest
block size, noting that dependence is restricted to block-based subgraphs whose size is dominated by
functions of the largest block size. Similar approaches have been taken in Schweinberger and Stewart
(2020). Notably, Assumption 4 does not assume that the sizes of blocks are fixed and allows these
quantities to grow without bound. However, this assumption places a restriction on how large blocks
can be in order to ensure that the derived concentration inequalities are sufficiently sharp to facilitate
the development of the statistical theory of this work.

2.2.1. Upper bounds on the ✓2-error of maximum likelihood estimators

The first theoretical result we present establishes upper-bounds on the ✓2-error of maximum likelihood
estimators for exponential-family local dependence random graph models which hold with high proba-
bility, presented in Theorem 2.1. This paves the way for establishing bounds on rates of convergence of
maximum likelihood estimators with respect to the ✓2-norm. We will address the question of optimal
rates of convergence in Section 2.2.2, where we outline a set of sufficient conditions for which we prove
the upper bounds in Theorem 2.1 are minimax optimal, in the sense that the upper bounds derived in
Theorem 2.1 match (up to an unknown constant) the minimax rate of convergence.
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Theorem 2.1. Consider a minimal exponential-family local dependence random graph model satisfy-

ing Assumptions 1, 2, 3, and 4 and assume that ? = dim()¢, ) � log # and @ = dim()¢⌫) � log # . Then

there exist constants ⇠ > 0 and #0 � 3, independent of # , ?, and @, such that, with probability at least

1 � #�2
, the maximum likelihood estimator b) = (b), ,b)⌫) 2R?+@ exists, is unique, and satisfies

||b), � )
¢
, ||2  ⇠

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

||b)⌫ � )
¢
⌫ ||2  ⇠ �avg

qe_¢max,⌫

e_nmin,⌫

r
@

#2 ,

for all integers # � #0.

Theorem 2.1 provides the foundation for establishing convergence rates in the ✓2-norm of maximum
likelihood estimators of exponential-family local dependence random graph models. The assumption
that the exponential family is minimal ensures uniqueness of the maximum likelihood estimator when
it exists (Proposition 3.13, Sundberg, 2019). Rates of convergence will depend on

• the dimensions of the parameters vectors ? = dim()¢, ) and @ = dim()¢⌫);

• the ratios
qe_¢max,, / e_nmin,, and

qe_¢max,⌫ / e_nmin,⌫; and

• the average block size �avg,

with rates of convergence depending on the scaling of these quantities with respect to # . Theorem 2.1
additionally provides a set of sufficient conditions for the event that the maximum likelihood estimator
exists to occur with high probability. Related to discussions in Section 1.2, the maximum likelihood
estimator exists in the event B(^) 2M, recalling the definition ofM from Section 1.2 as the mean-value
parameter space of the exponential family. The assumptions of Theorem 2.1 ensure that the probability
of the event B(^) 2M occurs with high probability, provided the network size # is sufficiently large.
This event essentially requires that the sufficient statistic not fall on the boundary of the convex hull
of the image of X under the vector of sufficient statistics B :X 7! R?+@ , i.e., mM. The probabilities
for any fixed network size # , however, will depend on both properties of the network and the model
specification. With regards to the latter, significant heterogeneity, such as in Example 3 in Section 1.2,
can result in a higher-dimensional parameter space and therefore sufficient statistic vector, which can
increase the chance of the sufficient statistic vector falling on the boundary mM, in which event the
maximum likelihood estimator will not exist.

We permit both e_¢max,, and e_¢max,⌫ to scale faster than e_nmin,, and e_nmin,⌫, respectively, provided
consistency is still established (i.e., provided Assumption 3 is met). Within the context of exponential
families of growing dimension in classical settings of a random sample of independent and identically
distributed random vectors, Portnoy (1988) and Ghosal (2000) obtain similar convergence rates, in their
respective settings. Notably, Theorem 2.1 of Portnoy (1988) arrives at a similar scaling requirement for
the minimum and maximum eigenvalues of Fisher information matrices. A key difference is that both
works place third order assumptions on the models (see the assumptions of Theorem 2.1 of Portnoy
(1988), and Theorem 2.1 of Ghosal (2000)). We avoid the need for such assumptions through the
method of proof of Theorem 2.1, but require a smoothness condition on minimum eigenvalues of Fisher
information matrices, as Assumptions 2 and 3 restrict the scaling of maximum eigenvalues of the Fisher
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information matrix at the data-generating parameter vector )¢ relative to minimum eigenvalues of the
same within a neighborhood B2 ()¢, n) of )¢. If we assume additional regularity in the spectrum of the
Fisher information matrices by assuming that

e_¢min,, B
_min

⇣
�Er2

),
✓()¢, ^)

⌘
 

= $
⇣e_nmin,,

⌘

e_¢min,⌫ B
_min

⇣
�Er2

)⌫
✓()¢, ^)

⌘
✓
 
2

◆ = $
⇣e_nmin,⌫

⌘
,

then we could prove a corollary to Theorem 2.1 which establishes the upper bounds

||b), � )
¢
, ||2  ⇠

p
�avg

qe_¢max,,

e_¢min,,

r
?

#

||b)⌫ � )
¢
⌫ ||2  ⇠ �avg

qe_¢max,⌫

e_¢min,⌫

r
@

#2 ,

which are more analogous to the results of Portnoy (1988). Related to other works within the statistical
network analysis, our consistency results and rates of convergence have key connections to theoretical
results for the V-model, for example those obtained in Shao et al. (2021), which includes convergence
rates for parameters of the V-model in the ✓2-norm, and also the ✓1- and ✓1-norms.

As a final point, Theorem 2.1 assumes that the block memberships are known, i.e., the blocks
A1, . . . ,A are observed or estimated without error. In many cases, the block memberships can be
observed through the observation process (e.g., Stewart et al., 2019, Schweinberger and Stewart, 2020).
However, in certain settings this may not be possible and the block memberships must be estimated
(e.g., Babkin et al., 2020, Schweinberger, 2020). In both cases, the results of Theorem 2.1 can be re-
garded as the estimation error of an oracle estimate with perfect knowledge or estimation of the block
structure of the network. The impact of imperfect block membership knowledge on theoretical guaran-
tees (whether through a noisy observation or error in the estimation of block memberships of nodes) is
an open question for future research.

2.2.2. Minimax risk in the ✓2-norm and optimal rates of convergence

We next turn to the question of whether the upper bounds on the ✓2-error established in Theorem 2.1
are optimal, in the sense that they match (up to an unknown constant) the rates of convergence of the
minimax risk in the ✓2-norm.

We define the minimax risk with respect to the ✓2-norm to be

R, ,# B infb),
sup

)2R?+@
E) ||b), � ), ||2

R⌫,# B infb)⌫
sup

)2R?+@
E) ||b)⌫ � )⌫ ||2.

(6)

The method by which we establish lower bounds to the minimax risk in the ✓2-norm requires placing
an assumptions on the average value of the largest eigenvalues of Fisher information matrices, similar
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to the roles of e_¢max,, and e_¢max,⌫ in Theorem 2.1, extended now to a neighborhood B2 ()¢, n) of )¢.
Fix n > 0, independent of # , ?, and @, and define

e_nmax,, B sup
)2B2 ()¢,n )

_max

⇣
�Er2

),
✓() , ^)

⌘
 

e_nmax,⌫ B sup
)2B2 ()¢,n )

_max

⇣
�Er2

)⌫
✓() , ^)

⌘
� 

2
� .

(7)

We first establish lower bounds to the minimax risks R, ,# and R⌫,# in Theorem 2.2, which enable us
to outline sufficient conditions for the upper bounds on the ✓2-error presented in Theorem 2.1 to achieve
(up to an unknown constant) the minimax rates of convergence; see Corollary 2.4. In the following
results, it is helpful to recall that e_nmin,, and e_nmin,⌫ are defined in Assumption 2, e_¢max,, and e_¢max,⌫
are defined in Assumption 3, and e_nmax,, and e_nmax,⌫ are defined in (7).

Theorem 2.2. (Lower bound to the minimax risk) Consider an exponential-family local dependence

random graph model satisfying Assumption 2. Then there exist constants ⇠1 > 0 and ⇠2 > 0, indepen-

dent of # , ?, and @, such that the minimax risks R, ,# and R⌫,# defined in (6) satisfy

R, ,# � ⇠1

s
�avg

e_nmax,,

r
?

#
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 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,
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�avg
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�avgqe_nmax,⌫
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@

#2 � ⇠2

 e_nmin,⌫e_nmax,⌫

! qe_¢max,⌫

e_nmin,⌫

�avg

r
@

#2 ,

provided ? = dim()¢, ) =$ (# e_nmax,, ) and @ = dim()¢⌫) =$ (#2 e_nmax,⌫).

The role of Assumption 2 in Theorem 2.2 is to ensure that both e_nmin,, and e_nmin,⌫ are bounded away
from 0, ensuring all of the lower bounds are well defined, whereas we assume

? = dim()¢, ) = $ (# e_nmax,, ) and @ = dim()¢⌫) = $ (#2 e_nmax,⌫) (8)

in order to satisfy a technical condition in the proof of Theorem 2.2. Under the assumption that the
maximum eigenvalues of Fisher information matrices are bounded away from 0, the condition in (8)
requires that ? =$ (#) and @ =$ (#2), which places a much less stringent restriction on the dimensions
of parameters vectors when compared with Assumption 3. Two sets of lower bounds are presented in
Theorem 2.2, with the first being the most sharp, but unhelpful in our pursuit of studying whether the
rates of convergence implied in Theorem 2.1 are minimax optimal. The second, though looser, set of
bounds approximately match the upper bounds on the ✓2-error established in Theorem 2.1. Indeed, this
second set of bounds allows us to establish conditions for such minimax optimality in Corollary 2.4
which is presented below.

Note that the lower bound to the minimax risk presented in Theorem 2.2 considers )¢ 2R?+@ . The
fact that the parameter space is unbounded introduces no complications when deriving lower bounds;
however, when turning to the problem of deriving an upper bound to the minimax risk, an unbounded
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parameter space presents new challenges. The following theorem obtains upper bounds on the minimax
risk with respect to the ✓2-norm in a neighborhood of the data-generating parameter vector.

Theorem 2.3. (Upper bound to the minimax risk) Under the assumptions of Theorem 2.1, there exist

constants⇠1 > 0,⇠2 > 0, and #0 � 3, independent of # , ?, and @, such that the minimax risks restricted

to a local neighborhood B2 ()¢, n) of a point )
¢ 2R?+@ satisfy, for all integers # � #0,

infb),
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where n > 0 is the same as in Assumptions 2 and 3 and in (7).

The final result of this section is concerned with outlining a set of sufficient conditions which allow
us to establish the minimax optimality of Theorem 2.1.

Corollary 2.4. Under the assumptions of Theorems 2.1 and 2.2, and the assumption that

e_nmax,, = $
⇣e_nmin,,

⌘
and e_nmax,⌫ = $

⇣e_nmin,⌫

⌘
, (9)

the maximum likelihood estimators b), and b)⌫ achieve the minimax rate of convergence, in the sense

that the upper bounds on the ✓2-error ofb), andb)⌫ presented in Theorem 2.1 match (up to an unknown

constant which is independent of # , ?, and @) the lower bounds to the minimax risks in Theorem 2.2.

If the exponential-family local dependence random graph model satisfies (9), then Corollary 2.4
establishes the minimax optimality of the rates of convergence for maximum likelihood estimators
implied via Theorem 2.1. Such an assumption is common in the high-dimensional statistics literature
(e.g., Ravikumar, Wainwright and Lafferty, 2010, Janková and van de Geer, 2018), where it is common
to assume that minimum and maximum eigenvalues of Fisher information matrices corresponding to
the sampling distribution are bounded away from 0 and from above, respectively. We can interpret
condition (9) similarly, however applied to the joint Fisher information for the entire collection of
random variables in the random graph (in contrast to the sampling distribution from which a random
sample is generated) and in a neighborhood B2 ()¢, n) of the data-generating parameter vector )¢.

2.3. Convergence rates of the multivariate normal approximation

A key challenge to any statistical analysis of network data is finding rigorous justification for statistical
inference methodology. The main contributing factor to this challenge lies in the fact that statistical
analyses of network data are typically in the setting of a single collection of dependent random vari-
ables without the benefit of replication. In other words, any statistical inference will be based on a
single observation of a collection of dependent binary random variables. It is common for inference
of model parameters in exponential-family random graph models to utilize the normal approximation
for carrying out inference about estimated coefficients (e.g., Krivitsky et al., 2023, Lusher, Koskinen



Rates of convergence for local dependence random graph models 17

and Robins, 2012, Stewart et al., 2019). Except in select cases, these inferences are performed without
rigorous theoretical justification, owing to the difficulty of obtaining theoretical results establishing
the validity of the normal approximation in scenarios with a single observations of a collection of
dependent binary random variables.

The dependence structure of local dependence random graph models facilitates proof of rigorous
theoretical results justifying the normal approximation for estimators, and in this section, we obtain
rates of convergence of the multivariate normal approximation in scenarios of increasing model di-
mension. It is worth noting that our results imply the univariate normal approximation, as multiple
univariate tests are frequently utilized in applications (e.g., Stewart et al., 2019). Similarly to our con-
sistency results presented in Theorem 2.1, the quality of the multivariate normal approximation will
depend on key quantities related to the block structure, graph, and model specification.

Throughout, `3 will denote a 3-dimensional multivariate normal random vector with mean vector 03
(the 3-dimensional vector of all zeros) and covariance matrix O3 (the 3-dimensional identity matrix).
The probability distribution of `3 is denoted by �3 .

In order to establish our multivariate normal approximation theory, we leverage a multivariate Berry-
Esseen theorem provided in Raič (2019), together with a Taylor expansion of the log-likelihood equa-
tion. Utilizing properties of exponential families, we are able to derive non-asymptotic bounds on the
error of the multivariate normal approximation for a standardization of the maximum likelihood esti-
mator, providing the first results which elaborate conditions under which the normal approximation is
expected to produce valid inferences in local dependence random graph models.

Theorem 2.5. Consider a minimal exponential-family local dependence random graph model satisfy-

ing Assumptions 1, 2, 3, and 4 and assume that ? = dim()¢, ) � log # and @ = dim()¢⌫) � log # . Then

there exist constants ⇠1 > 0, ⇠2 > 0, and #0 � 3, independent of # , ?, and @, and a random vector

� 2R?+@ such that, for all integers # � #0 and measurable convex sets C ⇢ R?+@ ,���P(� ()¢)1/2 (b) � )
¢) + � 2 C ) ��3 (`3 2 C )

���

 ⇠1 (? + @)1/4 �7
max

266664

vt
?3

(e_¢min,, )3 #
+
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@3

(e_¢min,⌫)3 #2
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,

where the random vector � satisfies
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The standardization � ()¢)1/2 (b) � )
¢) is of a familiar form in multivariate normal approximation

settings. The quantity � can be interpreted as an error term or a random perturbation, arising due
to a Taylor approximation. While our result is stated for � ()¢)1/2 (b) � )

¢) + �, an important aspect
of Theorem 2.5 lies in establishing that the random perturbation � to � ()¢)1/2 (b) � )

¢) is small (in
the ✓2-norm) with high probability, justifying basing inferences and derivations of confidence regions
on � ()¢)1/2 (b) � )

¢) in applications. Indeed, under mild assumptions (which we state below), it is
straightforward to establish that ||�||2 converges almost surely to 0 as #!1.

A remark is in order regarding the term (? + @)1/4 in the upper bound on the error of the multivariate
normal approximation in Theorem 2.5. Current results on multivariate Berry-Esseen bounds involve
terms which are functions of the dimension of the random vector (Raič, 2019). Here, the total dimension
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of the random vector is ? + @, as we are proving the joint multivariate normality of a standardization
of the entire vector of maximum likelihood estimators (b), ,b)⌫) which has dimension ? + @. In other
words, we are unable to separate the error into two terms which are functions of only quantities based
on within-block and between-block quantities, as was done in our consistency theory in Section 2.2.

Typically, both �, ()¢, )1/2 and �⌫ ()¢⌫)1/2 will be unknown, but can be approximated in practice.
We can approximate both �, ()¢, ) and �⌫ ()¢⌫) through Monte-Carlo methods, as Fisher information
matrices of canonical exponential families are the covariance matrices of the sufficient statistics. This
is a common approach to estimating the Fisher information matrix in the exponential-family random
graph model literature, owing to the fact that models are frequently estimated via Monte-Carlo maxi-
mum likelihood estimation, which already requires simulating sufficient statistic vectors (e.g., Hunter
and Handcock, 2006, Krivitsky et al., 2023), and discussed in Section 2.1.

Under an additional regularity assumption, we can simplify the bounds presented in Theorem 2.5.

Assumption 5. Assume that there exist constants ! > 0 and* > 0 such that

0 < !  min
ne_nmin,, , e_nmin,⌫

o
 max

ne_¢max,, , e_¢max,⌫

o
 *, (10)

for all values of # , ?, and @.

Assumption 5 is reminiscent of minimum and maximum eigenvalue restrictions in the high-
dimensional statistics literature, where it is common to assume the minimum and maximum eigen-
values of Fisher information matrices are bounded away from 0 and from above, respectively (e.g.,
Ravikumar, Wainwright and Lafferty, 2010, Janková and van de Geer, 2018). Assumption 5 can be
interpreted similarly, though applied to the averaged minimum and maximum eigenvalues of the joint
Fisher information matrices; see also the discussions following Corollary 2.4.

Under Assumptions 1, 2, 3, 4, and 5, we may leverage Theorem 2.5 to establish, for all measurable
convex sets C ⇢ R?+@ , the new bound of
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where � now satisfies
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In certain settings, it may be the case that properties of the network limit the sizes of the blocks, in
which the size of the largest block �max may be bounded for all network sizes. Under the additional
assumption that the sizes of the blocks are bounded above, we can absorb the quantities involving �max
and �avg into the constants ⇠1 > 0 and ⇠2 > 0 in the above bounds. This results in the following simple
bounds on the error of the multivariate normal approximation:

���P(� ()¢)1/2 (b) � )
¢) + � 2 C ) ��3 (`3 2 C )

���  ⇠1 (? + @)1/4
266664
r
?3

#
+

s
@3

#2

377775
,



Rates of convergence for local dependence random graph models 19

where � will then satisfy

P
©≠
´
||�||2  ⇠2

s
?5

#
+ @5

#2
™Æ
¨

� 1 � 1
#2 ,

for all measurable convex sets C ⇢ R?+@ . Note, in the above results, that the probability bounds ap-
proach 1 sufficiently fast, allowing us to establish, through the Borel–Cantelli lemma, that ||�||2 con-
verges P-almost surely to 0 as #!1, provided the upper bounds on ||�||2 tend to 0 as #!1.

Finally, to deliver a simple and easily interpretable result for statistical inference, we prove a corollary
to Theorem 2.5 establishing the asymptotic multivariate normality of maximum likelihood estimators.

Corollary 2.6. Under the assumptions of Theorem 2.5, Assumption 5, and assuming

lim
#!1

max
8>><
>>:
�6

max

s
�avg

?5

#
+ �2

avg
@5

#2 , (? + @)1/4 �7
max

266664
r
?3

#
+

s
@3

#2

377775
9>>=
>>;

= 0,

we have the distributional limit � ()¢)1/2 (b) � )
¢) ⇡! `?+@ as #!1.

Corollary 2.6 can be proved directly by observing that the assumptions of the corollary ensure the
error bounds in Theorem 2.5 converge to 0 in the limit as #!1. As a result of Corollary 2.6, standard
procedures for constructing confidence regions, univariate confidence intervals, and performing statis-
tical hypothesis tests for significance of parameters are justified using the asymptotic approximation of
the variance-covariance matrix � ()¢) =V B(^), which we discuss above. When the sizes of the blocks
are bounded as above, the essential condition for asymptotic multivariate normality becomes

lim
#!1

s
?5

#
+ @5

#2 = 0,

restricting the maximum growth with # of the dimensions of the parameters vectors ? = dim(), ) and
@ = dim()⌫), suggesting that both ? = dim(), ) = >(#1/5) and @ = dim()⌫) = >(#2/5) must hold in
our theory for the error of the multivariate normal approximation to vanish in the limit as #!1.

Up to now, we required knowledge of the Fisher information matrix � ()¢) = V B(^). We end the
section with a result concerning the estimation of this term for practical implementation. We define

e�¢, B
E[�r2

),
✓()¢, ^)]
 

and e�¢⌫ B
E[�r2

)⌫
✓()¢, ^)]� 
2
� .

Natural estimators for each are given by

b�, B
1
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�
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�>

b�⌫ B
1� 
2
� ’

1:<; 

�
B: ,; (^: ,;) � B⌫ (^⌫)
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with the definition

B, (^, ) B 1
 

 ’
:=1

B: ,: (^: ,: ) and B⌫ (^⌫) B
1� 
2
� ’

1:<; 
B: ,; (^: ,;).

The following theorem establishes bounds on the error |||b�, � e�¢, |||2 and |||b�⌫ � e�¢⌫ |||2 which hold with
high probability, where ||| · |||2 denotes the spectral matrix norm.

Theorem 2.7. Under the assumptions of Theorem 2.5, the events

|||b�, � e�¢, |||2  ⇠ �2
max

q
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 r
? log(?)

#
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r
?2

#

!
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qe_¢max,⌫
©≠
´
r
@ log(@)
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s
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™Æ
¨

jointly occur with probability at least 1 � 4#�2
.

The conclusions of Theorem 2.7 reiterate the conclusions of our previous theoretical results, that if
certain quantities related to the sizes of blocks and properties of models through the spectral properties
of Fisher information matrices are sufficiently well-behaved, and the dimensions of the parameter vec-
tors do not grow too quickly with # , then accurate estimation and valid inferences of parameter vectors
of local dependence random graph models will be obtained with high probability.

3. Simulation results

3.1. Simulation study 1: Convergence rates of maximum likelihood estimators

Simulation study 1 demonstrates that the rate of growth of the dimension of parameter vectors plays a
key role in the finite sample performance. We consider three cases in a setting which controls certain
aspects of the graph. Throughout this study, we assume that the sizes of the blocks are all fixed at 50,
i.e., |A: | = 50 for all : 2 {1, . . . , }. In order to vary the size of the network # , we vary the number of
blocks  2 {1,5,10,15,20}, which results in networks of size # 2 {50,250,500,750,1000}. We focus
on a special case of Example 3 from Section 1.2, by assuming that each node 8 2 N is assigned to a
group G1, . . . ,G" (" � 2). The specific form of this model is then given by

P) (^ = x) / exp

 
"’
<=1

\< B< (x) + \<+1 B<+1 (x)
!
,

where

B< (x) =
 ’
:=1

’
82A:\G<

’
92A:\{8 }

G8, 9 , < 2 {1, . . . ,"},

and

B<+1 (x) =
 ’
:=1

’
8< 9 : 82A: , 92A:

G8, 9
©≠
´

’
⌘2A:\{8, 9 }

G8,⌘ G 9 ,⌘ � 1™Æ
¨
.
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Figure 2. The results of Simulation study 1, which demonstrates the trade-off in finite sample performance of
maximum likelihood estimators based on the number of model parameters and size of the network. Each boxplot
for each combination of case and network size is based on 500 replications. Boxplots display the empirical distri-
bution of the ✓2-error, whereas the red lines track the 95% sample quantiles and the blue dashed lines track the
error bounds predicted by Theorem 2.1.

For this simulation study we will focus on the within-block parameter vector in order to easily compare
the trade-off between the dimension of the parameter vector ? and the size of the network # . We can
then assume that -8, 9 = 0 with probability one for all {8, 9} ⇢ N belonging to distinct blocks, i.e., the
between-block subgraphs ^: ,; (1  : < ;   ) are empty subgraphs with probability one.

We consider three cases:

• Case 1: " = 3, in which case ? = 4 for all # 2 {50,250,500,750,1000}.
• Case 2: " = d#2/5e, in which case ? 2 {6,11,14,16,17} depending on the size of the network.
• Case 3: " = d

p
#e, in which case ? 2 {9,17,24,29,33} depending on the size of the network.

For each case and network size # 2 {50,250,500,750,1000}, we simulate 500 networks fromP) where
\"+1 = .5 and (\1, . . . , \" ) 883⇠ Unif(�1.5,�.5). The value of \"+1 ensures there is a reasonably strong
tendency towards transitivity in the network, and the values of (\1, . . . , \" ) result in networks with
plausible densities. The results of the Simulation study 1 are summarized in Figure 2.

The finite sample performance of this study suggests, as would be expected based on the results of
Theorem 2.1, that the rate at which the ✓2-error converges to 0 is fastest in Case 1 for which the model
dimension is fixed, and slowest in Case 3 for which the model dimension is on the order of

p
# . We

compute a predicted error bound based on Theorem 2.1 by estimating the constant terms, which in this
simulation study include the average block sizes �avg and the largest block size �max, as well as the
terms quantifying averaged eigenvalues of the Fisher information matrices. This can be accomplished
by estimating constants for each network size by

b⇠# B &# ,.95

. r
?

#
, # 2 {50,250,500,750,1000},
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where &# ,.95 is the 95% sample quantile of the ✓2-errors of the maximum likelihood estimators based
on the 500 replications, and then using the estimate

b⇠ B
1
5

’
# 2{50,250,500,750,1000}

b⇠#
to obtain an overall estimate of the constant term. The predicted error bounds are then defined as

e⇢# B b⇠
r
?

#
, # 2 {50,250,500,750,1000}.

The dashed blue lines track the values of e⇢# in Figure 2, whereas the red lines track &# ,.95.
Notably, the predicted error bound closely matches the 95% sample quantile of the simulated ✓2-

errors. Theorem 2.1 establishes a bound which should hold with high probability, provided # is suf-
ficiently large. Figure 2 demonstrates that the predicted error bounds most closely match the realized
95% sample quantile of the simulated ✓2-errors for larger network sizes. It is also worth noting that an
additional source of variation here may be due to the fact that the constant term is not actually constant
in the network size, as the quantities e_¢max,, and e_nmin,, may depend on # . With that said, though, the
simulation reveals close agreement with the predicted error bounds.

3.2. Simulation study 2: Error of the normal approximation

The second simulation study we conduct explores the error of the normal approximation, leveraging
results in Theorem 2.5. We consider the same probability distribution as in Simulation study 1, in the
following two cases:
• Case 1: Fixed parameter dimension ? = 5 with " = 4 categories of each node group and networks

of size # 2 {250,500,750,1000}.
• Case 2: Growing parameter dimension ? = 2 with " = 2 � 1 categories of each node group,

where there are 50 nodes per block and the number of blocks vary over  2 {5,10,15,20}, result-
ing in networks of size # 2 {250,500,750,1000}.

We generate 500 replications in each case, simulating networks from the same probability distributions
as in Simulation study 1 and in the same manner.

We study the quality of the normal approximation by constructing confidence intervals for the transi-
tive edge parameter and Quantile-Quantile plots for the standardized maximum likelihood estimator of
the transitive edge parameter. Our results demonstrate the empirical Type I error in the former matches
the theoretical Type I error, with the Quantile-Quantile plots not revealing significant departure from
normality. For each case, we constructed 95% confidence intervals and computed the empirical Type I
error control. Letting \<+1 and b\<+1 denote the transitive edge parameter and the maximum likelihood
estimator of the transitive edge parameter, we leverage Theorem 2.5 to construct confidence intervals:

P

✓
\¢<+1 2

b\<+1 � @1�U/2

q
[Y�1]<+1,<+1, b\<+1 + @1�U/2

q
[Y�1]<+1,<+1

� ◆
⇡ 1 � U, U 2 (0,1),

where @1�U/2 denotes the (1 � U/2)%-quantile of the univariate standard normal distribution and
Y denotes the sample variance-covariance matrix obtained by sampling sufficient statistics through
MCMC methods; see the discussions in Section 2.1. For Case 1, the empirical coverage was
(.96, .95, .95, .96) corresponding to network sizes of (250,500,750,1000), and for Case 2, the same
was (.96, .95, .95, .96) corresponding to network sizes of (250,500,750,1000). The Quantile-Quantile
plots for each case across the different network sizes are presented in Figure 3.
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Figure 3. Quantile-Quantile plots showing the results of Simulation Study 2. The sample quantiles of the standard-
ized maximum likelihood estimates of the transitive edge parameter are plotted against the theoretical quantiles
based on the standard normal approximation in each of the two cases studied in Simulation study 2 across networks
of size # 2 {250,500,750,1000}.

4. Conclusions

In this work, we have proved the first rigorous theory for both estimation and statistical inference of
local dependence random graph models. We have established minimax optimal rates of convergence in
the ✓2-norm of maximum likelihood estimators of exponential-family local dependence random graph
models, accompanying these results with finite-sample error bounds on the multivariate normal ap-
proximation of a standardization of maximum likelihood estimators. Notably, our results allow for both
the number of parameters and the sizes of blocks to grow unbounded with the size of the network.

Our consistency and normal approximation theory are non-asymptotic, although we have stated help-
ful asymptotic results along the way, which enable us to understand how key aspects of the model
(through the spectrum of Fisher information matrices and the dimension of parameter vectors) and
properties of the network (through the number and sizes of blocks and nodes) impact rates of conver-
gence for both the statistical error (in the ✓2-norm) and the multivariate normal approximation. Our
results cover general settings and heterogeneous parameterizations, as exemplified in the examples in
Section 1.2 and our simulation studies in Section 3, which allow our results to cover a broad scope.

Results were derived under the assumption that we have perfect knowledge of the block member-
ships of nodes in the network. This may be reasonable in certain settings where we can observe the
block memberships of nodes, but might be violated in other settings where we obtain imperfect obser-
vations of the block memberships of nodes, whether through a noisy observation process or error in
the estimates of the block memberships. The effect of imperfect knowledge of the block memberships
of nodes on the aforementioned errors and convergence rates is an open question.
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1. Proof of Theorem 2.1
Our method of proof utilizes a general M-estimation argument. For ease of presentation, we first intro-
duce the general argument and then apply the general argument to maximum likelihood estimators of
exponential-family local dependence random graph models to obtain the results of Theorem 2.1.

General M-estimation framework for rates of convergence. Consider a random estimating func-
tion < :R3 ⇥X 7!R and define " ()) B E<() , ^) for ) 2R3 . We make the following assumptions
concerning <() , x) and " ()):

1. Assume that <() , x) is concave in ) 2 R3 and continuously differentiable at all ) 2 R3 and for
all x 2X.

2. Assume that " ()) is strictly concave in ) 2R3 and that )¢ 2R3 is the unique global maximizer
of " ()).

3. Assume that " ()) is twice continuously differentiable and that there exists an n > 0 (fixed) such
that the negative Hessian N()) B �r2

) " ()) of " ()) is positive definite for all ) 2 B2 ()¢, n).

1
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When <() , x) is the log-likelihood corresponding to a minimal exponential family, standard expo-
nential family theory establishes that the above conditions (1) and (2) hold (e.g., Proposition 3.10 of
(Sundberg, 2019)). As a result, r) " ()¢) = 03 , where 03 is the 3-dimensional zero vector. By Theorem
6.3.4 of Ortega and Rheinboldt (2000), if the event (for X > 0)

inf
)2mB2 ()¢, X)

h) � )
¢
, r) <() , ^)i � 0 (1)

occurs, where mB2 ()¢, X) denotes the boundary of B2 ()¢, X) B {) 2 R3 : ||) � )
¢||2 < X}, then a

root of r) <() , ^) exists in B2 ()¢, X) B B2 ()¢, X) [ mB2 ()¢, X), in which case a global maximizer
)0 = arg max)2R3 <() , ^) exists and satisfies ||)0 � )

¢||2  X.
The key to our approach lies in demonstrating that condition (1) holds with high probability for a

chosen X 2 (0, n) (n > 0 fixed) which helps to establish rates of convergence of estimators. In order to
do so, we leverage the multivariate mean value theorem to establish that there exists, for each parameter
vector ) 2 mB2 ()¢, X), a parameter vector

§) = C ) + (1 � C) )¢ 2 B2 ()¢, X) ⇢ B2 ()¢, n), for some C 2 (0,1),

such that

h) � )
¢
, r) " ())i = h) � )

¢
, r) " ()¢)i + h) � )

¢
, N( §)) () � )

¢)i

= h) � )
¢
, N( §)) () � )

¢)i,

recalling that r) " ()¢) = 03 . Observe that

h) � )
¢
, N( §)) () � )

¢)i =
h) � )

¢
, N( §)) () � )

¢)i
h) � )

¢
, ) � )

¢i ||) � )
¢||22 � _min (N( §))) X2

,

noting that the Rayleigh quotient of N( §)) is bounded below by the smallest eigenvalue _min (N( §))) of
N( §)) and that ||) � )

¢||2 = X for all ) 2 mB2 ()¢, X). As a result,

inf
)2mB2 ()¢,X)

h) � )
¢
, r) " ())i � inf

)2B2 ()¢,X)
_min (N())) X2

. (2)

As mB2 ()¢, X) ⇢ B2 ()¢, n),

inf
)2B2 ()¢,X)

_min (N())) � inf
)2B2 ()¢,n )

_min (N())) > 0, (3)

by the assumption that N()) is positive definite, and thus non-singular, on B2 ()¢, n); Assumption
2 ensures this condition for maximum likelihood estimators of exponential-family local dependence
random graph models. As a result of (2) and (3), the event

sup
)2mB2 ()¢,X)

��h) � )
¢
, r) <() , ^) � r) " ())i

��  inf
)2B2 ()¢,n )

_min (N())) X2
(4)

implies the event (1). Thus, demonstrating that event (4) occurs with probability at least 1�#�2 demon-
strates that event (1) occurs with probability at least 1 � #�2.
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Rates of convergence for maximum likelihood estimators. The log-likelihood equation of an
exponential-family local dependence random graph model has the form

✓() , x) =
 ’
:=1

✓: ,: (), , x: ,: ) +
’

1:<; 
✓: ,; ()⌫, x: ,;),

which implies that the maximum likelihood estimator b) = (b), ,b)⌫) is given by

b), = arg max
), 2R?

 ’
:=1

✓: ,: (), , x: ,: )

b)⌫ = arg max
)⌫ 2R@

’
1:<; 

✓: ,; ()⌫, x: ,;),
(5)

owing to the fact that the subgraphs ^: ,; (1  :  ;   ) are independent and that the parameter
vectors ), and )⌫ partition the parameters in ) . Hence, each optimizer in (5) can be found separately
and independently. Define

<, (), , x, ) B
 ’
:=1

✓: ,: (), , x: ,: )

<⌫ ()⌫, x⌫) B
’

1:<; 
✓: ,; ()⌫, x: ,;),

", (), ) B E<, (), , ^, ), and "⌫ ()⌫) B E<⌫ ()⌫, ^⌫), where

^, B (^1,1, . . . , ^ , ) and ^⌫ B (^1,2, . . . , ^1, , ^2,3, ^2,4, . . . , ^ �1, ).

Due to the above considerations,

N()) B �Er2
) ✓() , ^) =

 
N, (), ) 0?,@

0@,? N⌫ ()⌫)

!
,

where 03,A is the (3 ⇥ A)-dimensional matrix of all zeros, and where

N, (), ) B
 ’
:=1

N: ,: (), ) and N⌫ ()⌫) B
’

1:<; 
N: ,; ()⌫),

with the definitions

N: ,: (), ) B �Er2
),
✓: ,: (), , ^: ,: ), for all 1  :   

N: ,; ()⌫) B �Er2
)⌫
✓: ,; ()⌫, ^: ,;), for all 1  : < ;   .

Note that the interchange of differentiation and integration in this setting is trivial as the expectations
are finite sums.
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We demonstrate that event (4) occurs with probability at least 1 � #�2 for the within-block and
between-block cases separately. Assumption 2 ensures that

inf
)2B2 ()¢, ,n )

_min (N, (), )) =  e_nmin,, > 0

inf
)2B2 ()¢⌫ ,n )

_min (N⌫ ()⌫)) =
✓
 

2

◆ e_nmin,⌫ > 0.
(6)

Let X, 2 (0, n /
p

2) and X⌫ 2 (0, n /
p

2), and assume ), 2 mB2 ()¢, , X, ) and )⌫ 2 mB2 ()¢⌫, X⌫).
By assumption, (), , )⌫) 2 B2 ()¢, n). Thus, using (6), we can rewrite the events in (4) as events

|h), � )
¢
, , r), <, (), , ^, ) � r), ", (), )i |  X

2
,  e_nmin,,

|h)⌫ � )
¢
⌫, r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫)i |  X

2
⌫

✓
 

2

◆ e_nmin,⌫ .

By the Cauchy-Schwarz inequality,

|h), � )
¢
, , r), <, (), , ^, ) � r), ", (), )i |

 ||), � )
¢
, ||2 ||r), <, (), , ^, ) � r), ", (), ) ||2

= X, ||r), <, (), , ^, ) � r), ", (), ) ||2.

Similarly,

|h)⌫ � )
¢
⌫, r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫)i |

 X⌫ ||r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫) ||2.

It therefore suffices to demonstrate, for all ), 2 mB2 ()¢, , X, ) and )⌫ 2 mB2 ()¢⌫, X⌫), that events

||r), <, (), , ^, ) � r), ", (), ) ||2  X,  e_nmin,,

||r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫) ||2  X⌫
� 

2
� e_nmin,⌫

(7)

occur with probability at least 1 � #�2. Define, for all C > 0, the events

D, (C) B
(
x 2X : sup

), 2mB2 ()¢, ,X, )
||r), <, (), , ^, ) � r), ", (), ) ||2 � C

)

D⌫ (C) B

(
x 2X : sup

)⌫ 2mB2 ()¢⌫ ,X⌫)
||r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫) ||2 � C

)
.

By Lemma 7.2,

sup
), 2mB2 ()¢, ,X, )

||r), <, (), , ^, ) � r), ", (), ) ||2 = ||r), ✓, ()¢, , ^, ) ||2

sup
)⌫ 2mB2 ()¢⌫ ,X⌫)

||r)⌫ <⌫ ()⌫, ^⌫) � r)⌫ "⌫ ()⌫) ||2 = ||r)⌫ ✓⌫ ()¢⌫, ^⌫) ||2,
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and applying Lemma 1.1, we obtain the bounds

P
⇣
D,

⇣
X,  e_nmin,,

⌘⌘
 exp

 
�

X
2
, (e_nmin,, )2

 
2

5 e_¢max,, +⇠, �
2
max

p
? X, e_nmin,,  

+ log(5) ?
!

and

P
⇣
D⌫

⇣
X⌫

� 
2
� e_nmin,⌫

⌘⌘
 exp ©≠

´
�

X
2
⌫ (e_nmin,⌫)

2 � 
2
�2

5
� 

2
� e_¢max,⌫ + 2⇠⌫ �2

max
p
@ X⌫ e_nmin,⌫

� 
2
� + log(5) @™Æ

¨
.

Choosing

X, = V,

qe_¢max,,

e_nmin,,

r
?

 

> 0,

for a value of V, 2 (0,1) to be given, establishes

P
⇣
D,

⇣
X, e_nmin,,  

⌘⌘
 exp

©≠≠
´
�

V
2
, ?  e_¢max,,

5 e_¢max,, +⇠, V, �
2
max ?

q
 e_¢max,,

+ log(5) ?
™ÆÆ
¨
.

Using Assumption 4, the assumption that

�max 
 
# e_¢max,,

�avg ?2

!1/4

implies �
2
max ?

q
 e_¢max,,   e_¢max,, ,

defining �avg B  
�1 Õ 

:=1 |A: | and using the identity

# =
 ’
:=1

|A: | =  

1
 

 ’
:=1

|A: | =  �avg. (8)

Hence,

exp
©≠≠
´
�

V
2
, ?  e_¢max,,

5 e_¢max,, +⇠, V, �
2
max ?

q
 e_¢max,,

+ log(5) ?
™ÆÆ
¨

 exp

 
�

V
2
, ?  e_¢max,,

(5 + V, ⇠, )  e_¢max,,

+ log(5) ?
!

= exp

  
�

V
2
,

5 + V, ⇠,
+ log(5)

!
?

!
.

To obtain the desired probability guarantee, we require

�
V

2
,

5 + V, ⇠,
+ log(5) = �2,
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which in turn requires a solution V, 2 (0,1) to the quadratic equation

V
2
, �⇠, (2 + log(5)) V, � 5 (2 + log(5)) = 0.

Using the quadratic formula, such a root is given by

V, =
⇠, (2 + log(5)) +

q
⇠

2
, (2 + log(5))2 + 20 (2 + log(5))

2
> 0,

which in turn establishes that

P
⇣
D,

⇣
X, e_nmin,,  

⌘⌘
 exp (�2 ?) .

Under the assumption that ? � log(#),

P
⇣
D,

⇣
X, e_nmin,,  

⌘⌘
 1

#
2 .

Similarly, choosing

X⌫ = V⌫

qe_¢max,⌫

e_nmin,⌫

s
@� 
2
� > 0,

for a value of V⌫ 2 (0,1) to be given, establishes

P
⇣
D⌫

⇣
X⌫ e_nmin,⌫

� 
2
� ⌘⌘

 exp
©≠≠
´
�

V
2
⌫ @

� 
2
� e_¢max,⌫

5
� 

2
� e_¢max,⌫ + 2⇠⌫ V⌫ �2

max @
q� 

2
� e_¢max,⌫

+ log(5) @
™ÆÆ
¨
.

Using Assumption 4, the assumption that

�max 
 
#

2 e_¢max,⌫

4 �2
avg @

2

!1/4

implies �
2
max @

q� 
2
� e_¢max,⌫ 

� 
2
� e_¢max,⌫,

once more using the identity in (8). Hence,

exp
©≠≠
´
�

V
2
⌫ @

� 
2
� e_¢max,⌫

5
� 

2
� e_¢max,⌫ + 2⇠⌫ V⌫ �2

max @
q� 

2
� e_¢max,⌫

+ log(5) @
™ÆÆ
¨

 exp

 
�

V
2
⌫ @

� 
2
� e_¢max,⌫

(5 + 2⇠⌫ V⌫)
� 

2
� e_¢max,⌫

+ log(5) @
!

= exp

  
�

V
2
⌫

5 + 2⇠⌫ V⌫
+ log(5)

!
@

!
.

To obtain the desired probability guarantee, we require

�
V

2
⌫

5 + 2⇠⌫ V⌫
+ log(5) = �2,
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which in turn requires a solution V⌫ 2 (0,1) to the quadratic equation

V
2
⌫ � 2⇠⌫ (2 + log(5)) V⌫ � 5 (2 + log(5)) = 0.

Using the quadratic formula, such a root is given by

V⌫ = ⇠⌫ (2 + log(5)) +
q
⇠

2
⌫ (2 + log(5))2 + 5 (2 + log(5)) > 0,

which in turn establishes that

P
⇣
D⌫

⇣
X, e_nmin,⌫

� 
2
� ⌘⌘

 exp (�2 @) .

Under the assumption that @ � log(#),

P
⇣
D,

⇣
X⌫ e_nmin,⌫

� 
2
� ⌘⌘

 #
�2
.

As a result, event (7) occurs with probability at least 1 � #�2, implying that, with probability at least
1 � #�2, the maximum likelihood estimator b) = (b), ,b)⌫) exists uniquely and satisfies

||b), � )
¢
, ||2  V,

qe_¢max,,

e_nmin,,

r
?

 

||b)⌫ � )
¢
⌫ ||2  V⌫

qe_¢max,⌫

e_nmin,⌫

s
@� 
2
� .

Uniqueness of (b), ,b)⌫) follows from the assumption that the exponential-family local dependence
random graph model is minimal (Proposition 3.13 of Sundberg (2019)). We convert the bounds in
terms of  to # by utilizing (8) again to show that

||b), � )
¢
, ||2  V,

qe_¢max,,

e_nmin,,

r
?

 

= ⇠1
p
�avg

qe_¢max,,

e_nmin,,

r
?

#

||b)⌫ � )
¢
⌫ ||2  V⌫

qe_¢max,⌫

e_nmin,⌫

s
@� 
2
�  ⇠2 �avg

qe_¢max,⌫

e_nmin,⌫

r
@

#
2 ,

using
� 

2
�
�  2 /4 in the second case, and defining ⇠1 B V, > 0 and ⇠2 B 2 V⌫ > 0. Both are inde-

pendent of # , ?, and @.
Finally, we show the restriction to B2 ()¢, n) to be legitimate. Assumption 3 ensures

lim
#!1

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

= 0 and lim
#!1

�avg

qe_¢max,⌫

e_nmin,⌫

r
@

#
2 = 0.

As such, there exists an #0 � 3 such that, for all integers # � #0, we have max{X, , X⌫} < n/
p

2. Thus,
for all integers # � #0 and with probability at least 1 � #�2, the unique vector b) 2 b⇥ satisfies

||b) � )
¢||2 =

q
||b), � )

¢
, ||22 + ||b)⌫ � )

¢
⌫ ||22 

q
X

2
, + X2

⌫ < n ,
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which implies, for all integers # � #0, that

P( ||b) � )
¢||2  n) � 1 � #�2

,

justifying the restriction to the subset of the parameter space B2 ()¢, n) ⇢ R?+@ .

1.1. Auxiliary results for Theorem 2.1

We prove a concentration inequality for gradients of the log-likelihood which is utilized in the proof of
Theorem 2.1.

Lemma 1.1. Under the assumptions of Theorem 2.1,

P
�
||r), ✓, ()¢, , ^, ) ||2  X

�
� 1 � exp

 
� X

2

5 e_¢max,, +⇠, �
2
max

p
? X

+ log(5) ?
!

P
�
||r)⌫ ✓⌫ ()¢⌫, ^⌫) ||2  X

�
� 1 � exp

 
� X

2

5
� 

2
� e_¢max,⌫ + 2⇠⌫�2

max
p
@ X

+ log(5) @
!
,

for all X > 0, where ⇠, > 0 and ⇠⌫ > 0 are the same constants as in Assumption 1.

PROOF OF LEMMA 1.1. We first prove the result for the within-block case, and then discuss exten-
sions to prove the result for the between-block case, noting that the two proofs are essentially the same
with only a couple of notational changes.

Following the method utilized in the proof of Lemma 8.4 of Chen, Gao and Zhang (2022), define
U B {u 2R? : ||u ||2  1} to be the closed unit ball in R? . By Corollary 4.2.13 (p. 78) of Vershynin
(2018), there exists a subset Vn ⇢ U (for n 2 (0,1)) which is an n-net of U ⇢ R? such that the cardi-
nality of the set Vn satisfies log |Vn |  ? log(2 n�1 + 1). Taking n = 1/2, there exists, for each u 2 U , a
v 2 V1/2 satisfying ||u � v ||2  1/2, where log |V1/2 |  ? log(5). For ease of presentation, define

M B r), ✓, ()¢, , ^, ).

For any u 2 U , with the corresponding v 2 V1/2, the Cauchy-Schwarz inequality implies

hu, Mi = hv, Mi + hu � v, Mi

 hv, Mi + ||u � v ||2 ||M ||2

 hv, Mi + 1
2
||M ||2,

(9)

using the fact that ||u � v ||2  1/2 in the last line. Next, choosing

D8 =
⌧8

||M ||2
, 8 2 {1, . . . , ?},

ensures that ||u ||2  1 so that the chosen u exists in U . By writing

hu, Mi =
1

||M ||2

?’
8=1

⌧
2
8 =

||M ||22
||M ||2

= ||M ||2,
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we revisit (9) to obtain, using the above identity and re-arrangement, the inequality

||M ||2  2 max
v2V1/2

hv, Mi, (10)

where we take the maximum over v 2 V1/2 since we cannot be sure which v 2 V1/2 would correspond
to our choice of u 2 U above. A quick remark is in order regarding the case when ||M ||2 = 0. Note that
the above implicitly assumed ||M ||2 < 0. In the event where ||M ||2 = 0, the inequality (10) remains true
trivially, because M = 0? and hv, Mi = 0 for all v 2 V1/2. As a result of (10) and for X > 0,

P
�
||r), ✓, ()¢, ^) ||2  X

�
� P

 
2 max

v2V1/2
hv, Mi  X

!

= 1 �P
 
2 max

v2V1/2
hv, Mi > X

!
.

We next focus on bounding the probability

P

 
2 max

v2V1/2
hv, Mi > X

!
 exp(? log(5)) max

v2V1/2
P

✓
hv, Mi > X

2

◆
,

where the inequality follows from a union bound over the set of v 2 V1/2 and using the fact that
log |V1/2 |  ? log(5). For a given v 2 V1/2, Lemmas 7.1 and 7.2 allow us to write

hv, Mi =
?’
8=1

E8
⇥
r), ✓, ()¢, , ^, )

⇤
8 =

?’
8=1

E8

 ’
:=1

⇥
B: ,: ,8 (^: ,: ) �E B: ,: ,8 (^: ,: )

⇤
.

Observe the following two key facts:

1. (Mean zero) The sum of random variables hv, Mi satisfies E hv, Mi = 0.

2. (Sum of independent random variables) The sum of random variables

hv, Mi =
 ’
:=1

"
?’
8=1

E8
⇥
B: ,: ,8 (^: ,: ) �E B: ,: ,8 (^: ,: )

⇤ #

is a sum of mean zero independent random variables for fixed v 2 V1/2, because, by the local
dependence assumption, the collection of random variables

?’
8=1

E8
⇥
B: ,: ,8 (^: ,: ) �E B: ,: ,8 (^: ,: )

⇤
, : 2 {1, . . . , }, (11)

is a collection of independent random variables for fixed v 2 V1/2.
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Together, these two points ensure the assumptions of Bernstein’s inequality are met (e.g., Theorem
2.8.4, p. 35, Vershynin, 2018). Along this path, we first evaluate the variance term by writing

V hv, Mi =
 ’
:=1
V

 
?’
8=1

E8
⇥
B: ,: ,8 (^: ,: ) �E B: ,: ,8 (^: ,: )

⇤ !

=
 ’
:=1

?’
8=1

?’
9=1
C(E8 B: ,: ,8 (^: ,: ), E 9 B: ,: , 9 (^: ,: ))

=
 ’
:=1

?’
8=1

?’
9=1

E8 E 9 C(B: ,: ,8 (^: ,: ), B: ,: , 9 (^: ,: ))

=
 ’
:=1

⌦
v, �: ,: ()¢) v

↵

=
⌦
v, �, ()¢) v

↵
 _max (�, ()¢)) ||v ||22

 9
4
_max (�, ()¢)),

where _max (�, ()¢)) is the largest eigenvalue of �, ()¢), and using the inequality

||v ||2  ||u ||2 + ||u � v ||2  1 + 1
2

 3
2
,

where the construction of the n-net V1/2 of U with n = 1/2 ensures the existence of such a u 2 U to
make the above inequality valid. This yields the final inequality

max
v2V1/2

V hv, Mi  9
4
_max (�, ()¢)) =

9
4
 e_¢max,, ,

defining

e_¢max,, B
_max (�Er2

),
✓()¢, ^))

 

=
_max (�, ()¢))

 

.

We next bound the absolute value of each random variable in (11) P-almost surely. By Assumption 1,
there exists a constant ⇠, > 0, independent of # , ?, and @, such that

max
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
, : 2 {1, . . . , }. (12)
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Hence, by the Cauchy-Schwarz inequality and using (12),

max
:2{1,..., }

sup
x:,: 2X:,:

�����
?’
8=1

E8
�
B: ,: ,8 (x: ,: ) �E B: ,: ,8 (^: ,: )

� �����
 max

:2{1,..., }
sup

x:,: 2X:,:

||v ||2 ||B: ,: (x: ,: ) �E B: ,: (^: ,: ) ||2

 3
2

 
max

:2{1,..., }
sup

x:,: 2X:,:

||B: ,: (x: ,: ) �E B: ,: (^: ,: ) ||2

!


3p?

2

 
max

:2{1,..., }
sup

x:,: 2X:,:

||B: ,: (x: ,: ) �E B: ,: (^: ,: ) ||1
!

 3p?
 

max
:2{1,..., }

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1
!

 3p? ⇠,
✓
�max

2

◆

 3⇠,
2

�
2
max

p
?,

noting the bound ||v ||2  3 /2 demonstrated above. With these bounds, we apply Bernstein’s inequality
(for just the upper-tail) (e.g., Theorem 2.8.4, p. 35, Vershynin, 2018) to obtain

P (hv, Mi > X)  exp

 
� X

2 /2
(9 /4)  e_¢max,, + (3⇠, /2) �2

max
p
? X /3

!

 exp

 
� X

2

5 e_¢max,, +⇠, �
2
max

p
? X

!
.

Collecting results, we have shown, for X > 0, that

P
�
||r), ✓, ()¢, , ^, ) ||2  X

�
� 1 � exp

 
� X

2

5 e_¢max,, +⇠, �
2
max

p
? X

+ log(5) ?
!
.

Changes for the between-bock case. By a similar argument,

P
�
||r)⌫ ✓⌫ ()¢⌫, ^⌫) ||2  X

�
� 1 � exp

 
� X

2

5
� 

2
� e_¢max,⌫ + 2⇠⌫�2

max
p
@ X

+ log(5) @
!
,

for X > 0. We highlight the main changes to the above argument. First, we now take

M B r)⌫ ✓⌫ ()¢⌫, ^⌫).
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Second, the dimension ? of )¢, 2 R? is replaced by the dimension @ of )¢⌫ 2 R@ . This implies that
log |V1/2 |  @ log(5). Third,

hv, Mi =
’

1:<; 

"
@’
8=1

E8
⇥
B: ,;,8 (^: ,;) �E B: ,;,8 (^: ,;)

⇤ #
,

which implies

V hv, Mi  9
4
_max (�⌫ ()¢)) =

9
4

✓
 

2

◆ e_¢max,⌫,

defining

e_¢max,⌫ B
_max (�Er2

⌫ ✓()¢, ^))� 
2
� =

_max (�⌫ ()¢))� 
2
� .

Fourth, and finally, we have the bound

max
{: ,; }✓{1,..., }

sup
x:,; 2X:,;

�����
@’
8=1

E8
⇥
B: ,;,8 (x: ,;) �E B: ,;,8 (^: ,;)

⇤ �����  3⇠⌫ �2
max

p
@.

Together, these changes will yield the inequality

P
�
||r)⌫ ✓⌫ ()¢⌫, ^⌫) ||2  X

�
� 1 � exp

 
� X

2

5
� 

2
� e_¢max,⌫ + 2⇠⌫�2

max
p
@ X

+ log(5) @
!
,

for X > 0.

2. Proof of Theorem 2.2
Our method of proof utilizes Fano’s method for lower bounding the minimax risk. We present a general
argument for lower bounding the minimax risk for exponential families utilizing Fano’s method and
then apply the obtained general argument to our specific cases.

General argument. Consider an exponential family of densities { 5) : ) 2 R<} for a finite support
X given by

5) (x) = ⌘(x) exp (h) , B(x)i � k())) > 0, x 2X,

data-generating parameter vector )¢, and define the minimax risk in the ✓2-norm to be

R B infb) sup
)2R<

E) ||b) � ) ||2.

In the case that 5) (x) = 0 for some x 2X, we would simply reduce the support to

X0 B {x 2X : 5) (x) > 0},

obtaining a family of strictly positive densities on X0. For ease of presentation, we therefore proceed
without loss of generality assuming that { 5) : ) 2R<} are strictly positive on the supportX.
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Let n > 0 be fixed and consider W 2 (0, n). Assume that {)1, . . . , )" } ⇢ B2 ()¢, W) (" � 2) is a
2 X-separated set in the metric 3 (v,w) = ||v � w ||2, i.e., 3 () 8 , ) 9 ) � 2 X for all pairs {8, 9} ✓ {1, . . . ,"}.
Then, by Proposition 15.12 (p. 502) of Wainwright (2019) and the discussions following, the minimax
risk R has the lower bound

R � X


1 � I + log(2)

log "

�
,

where
I B max

{8, 9 }✓{1,...," }
KL() 8 , ) 9 ), (13)

defining the Kullback–Leibler divergences

KL() 8 , ) 9 ) B
’
x2X

5)8 (x) log
5)8 (x)
5) 9 (x)

, {8, 9} ✓ {1, . . . ,"}.

For an exponential family, we can express KL() 8 , ) 9 ) as

KL() 8 , ) 9 ) =
’
x2X

5)8 (x)
⇥
log ⌘(x) � log ⌘(x) + h) 8 � ) 9 , B(x)i � k() 8) + k() 9 )

⇤

= E)8 h) 8 � ) 9 , B(^)i � k() 8) + k() 9 )

= h) 8 � ) 9 , -() 8)i � k() 8) + k() 9 ),

(14)

defining -()) B E) B(^) to be the mean-value parameter map of the exponential family. Using Corol-
lary 2.3 of Brown (1986), we perform the expansion

k() 9 ) = k() 8) + h) 9 � ) 8 , -() 8)i +
1
2
h) 9 � ) 8 , � ( §)) () 9 � ) 8)i

= k() 8) � h) 8 � ) 9 , -() 8)i +
1
2
h) 8 � ) 9 , � ( §)) () 8 � ) 9 )i,

(15)

where §) = C ) 8 + (1 � C) ) 9 (for some C 2 (0,1)) and � ()) B �Er2
) log 5) (^) is the Fisher information

matrix corresponding to 5) . Combining (14) and (15),

KL() 8 , ) 9 ) =
1
2
h) 8 � ) 9 , � ( §)) () 8 � ) 9 )i

 1
2
=e_nmax ||) 8 � ) 9 ||22

 1
2
=e_nmax

�
||) 8 � )

¢||2 + ||) 9 � )
¢||2

�2

 2= n2 e_nmax,

defining for a fixed n > 0 the quantity

e_nmax B sup
)2B2 ()¢,n )

_max (� ()))
=

,

noting that {)1, . . . , )" } ⇢ B2 ()¢, W) ⇢ B2 ()¢, n) by assumption. The size " of the largest possi-
ble 2 X-separated set {)1, . . . , )" } ⇢ B2 ()¢, W) ⇢ R< is the packing number of B2 ()¢, W), which by
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Lemma 4.2.8 (equivalence of covering and packing numbers) and Corollary 4.2.13 (covering numbers
of the Euclidean ball) of Vershynin (2018), satisfies

" �
⇣
W

2 X

⌘<
,

taking the 2 X-separated set {)1, . . . , )" } ⇢ B2 ()¢, W) to be as large as possible and applying the
results to a Euclidean ball of arbitrary radius W > 0. As a result,

log" � < log(W /2 X).

Altogether, we have demonstrated the bound

R � X

"
1 � 2= W2 e_nmax + log(2)

< log(W /2 X)

#
.

We desire that

2= W2 e_nmax + log(2)
< log(W /2 X)  1

2
,

in order to show that R � X /2. Re-arranging this inequality, we have

4= W2 e_nmax
<

 4= W2 e_nmax
<

+ 2 log(2)
<

 log(W /2) � log(X),

and exponentiating we obtain

exp

 
4= W2 e_nmax

<

!
 W /2

X

 W

X

.

This leads us to the following inequality

X  W exp

 
�4= W2 e_nmax

<

!
.

Choosing

W = ⇠

r
<

=e_nmax
,

for some ⇠ > 0 which is presumed to be fixed, but freely chosen, yields the bound

X  ⇠ exp(�4⇠2)
r

<

=e_nmax
. (16)

As long as < =$ (=e_nmax), we can choose ⇠ > 0 to ensure that W 2 (0, n). Thus, for all X > 0 satisfying
(16), we can lower bound the minimax risk R by

R � X

2
.
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The remainder of the proof will utilize this general argument to lower bound the minimax risk in the
✓2-norm for exponential-family local dependence random graphs.

Lower bounds to the minimax risk in the ✓2-norm for exponential-family local dependence
random graphs. We will first handle the within-block case by considering

R, ,# B infb),
sup

)2R?+@
E) ||b), � ), ||2.

Fix n > 0, independent of # , ?, and @, and define

e_nmax,, B sup
)2B2 ()¢,n )

_max

⇣
�Er2

),
✓() , ^)

⌘
 

.

With this definition, we revisit (16) taking < = ? and = =  to obtain

R, ,# � ⇠1 exp(�4⇠2
1 )

s
?

 e_nmax,,

,

for some ⇠1 > 0 assumed to be fixed, but freely chosen. Using the relationship

# =
 ’
:=1

|A: | =  

1
 

 ’
:=1

|A: | =  �avg,

defining �avg B  
�1 Õ 

:=1 |A: |, we obtain

R, ,# � ⇠1 exp(�4⇠2
1 )

s
�avg

e_nmax,,

r
?

#

.

Then there exists ⌫1 B ⇠1 exp(�4⇠2
1 ) > 0, independent of # , ?, and @, such that

R, ,# � ⌫1

s
�avg

e_nmax,,

r
?

#

= ⌫1
1qe_nmax,,

vute_¢max,,e_¢max,,

e_nmin,,e_nmin,,

p
�avg

r
?

#

= ⌫1
©≠≠
´

e_nmin,,qe_¢max,,
e_nmax,,

™ÆÆ
¨

qe_¢max,,

e_nmin,,

p
�avg

r
?

#

� ⌫1

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

p
�avg

r
?

#

.
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The above inequality establishes

R, ,# � ⌫1

s
�avg

e_nmax,,

r
?

#

� ⌫1

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

p
�avg

r
?

#

.

Next, we prove the between-block case and consider

R⌫,# B infb)⌫
sup

)2R?+@
E) ||b)⌫ � )⌫ ||2.

Fix n > 0, independent of # , ?, and @, and define

e_nmax,⌫ B sup
)2B2 ()¢,n )

_max

⇣
�Er2

)⌫
✓() , ^)

⌘
� 

2
� .

With this definition, we revisit (16) taking < = @ and = =
� 

2
�

to obtain

R⌫,# � ⇠2 exp(�4⇠2
2 )

s
@� 

2
� e_nmax,⌫

,

for some ⇠2 > 0 assumed to be fixed, but freely chosen. Using the relationship

# =
 ’
:=1

|A: | =  

1
 

 ’
:=1

|A: | =  �avg,

defining �avg B  
�1 Õ 

:=1 |A: |, we obtain

R⌫,# � ⇠2 exp(�4⇠2
2 )

1qe_nmax,⌫

vuut @✓
# / �avg

2

◆

� ⇠2 exp(�4⇠2
2 )

1qe_nmax,⌫

s
2 @ �2

avg

#
2 = ⌫2

�avgqe_nmax,⌫

r
@

#
2 ,



Supplement to “Rates of convergence for local dependence random graph models” 17

where ⌫2 B
p

2⇠2 exp(�4⇠2
2 ) > 0 is independent of # , ?, and @. Hence,

R⌫,# � ⌫2
�avgqe_nmax,,

r
@

#
2

= ⌫2
1qe_nmax,,

vute_¢max,,e_¢max,,

e_nmin,,e_nmin,,

�avg

r
@

#
2

= ⌫2
©≠≠
´

e_nmin,,qe_¢max,,
e_nmax,,

™ÆÆ
¨

qe_¢max,,

e_nmin,,

�avg

r
@

#
2

� ⌫2

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

�avg

r
@

#
2 ,

showing the claimed result of

R⌫,# � ⌫2
�avgqe_nmax,,

r
@

#
2 � ⌫2

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

�avg

r
@

#
2 .

Lastly, the assumption in the general argument that < =$ (=e_nmax) requires:

• ? = dim()¢, ) satisfies ? =$ (# e_nmax,, ), and
• @ = dim()¢⌫) satisfies @ =$ (#2 e_nmax,⌫),

substituting the relevant quantities into < =$ (=e_nmax) for each case.

3. Proof of Theorem 2.3

We start by considering the restricted minimax risk

infb),
sup

)2B2 ()¢,n )
E) ||b), � ), ||2,

where n > 0 is the same as in Assumptions 2 and 3. Let ) 2B2 ()¢, n) ⇢ R?+@ be arbitrary. We partition
the supportX of ^ as follows:

X1 B

8>>><
>>>:
x 2X : ||b), � )

¢
, ||2  ⇠1

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

9>>>=
>>>;

X2 B X \ X1,
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where the constant ⇠1 > 0 is the same as the one guaranteed in Theorem 2.1. Then,

E) ||b), � ), ||2 = E)

h
||b), � ), ||2 | ^ 2X1

i
P) (^ 2X1)

+ E)

h
||b), � ), ||2 | ^ 2X2

i
P) (^ 2X2),

(17)

by the law of total expectation, and

infb),
sup

)2B2 ()¢,n )
E) ||b), � ), ||2  sup

)2B2 ()¢,n )
E)

h
||b), � ), ||2 | ^ 2X1

i
P) (^ 2X1)

+ sup
)2B2 ()¢,n )

E)

h
||e), � ), ||2 | ^ 2X2

i
P) (^ 2X2),

where b), in the first term in the upper bound is the maximum likelihood estimator and

e), B arg max
), 2B2 (0? ,100)

✓, (), , ^, )

is the maximum likelihood estimator restricted to the subset B2 (0? ,100). Note that Theorem 2.1 es-
tablishes that there exists #0 � 1, independent of # , ?, or @, such that P(^ 2X1) � 1� #�2, in which
case we have the bound P(^ 2 X2)  #

�2, for all integers # � #0. Observe that the upper bound
becomes trivial in the case when P(^ 2X2) = 0. We then obtain the upper bound

sup
)2B2 ()¢,n )

E)

h
||e), � ), ||2 | ^ 2X2

i
 supe), 2B2 (0? ,100)

sup
)2B2 ()¢,n )

||e), � ), ||2.

Define

" B supe), 2B2 (0? ,100)
sup

)2B2 ()¢,n )
||e), � ), ||2 2 (0,1).

Continuing from (17) leads us to the upper bound

E) ||b), � ), ||2  E)

h
||b), � ), ||2 | ^ 2X1

i
P) (^ 2X1) +" P) (^ 2X2)

 E)

h
||b), � ), ||2 | ^ 2X1

i ✓
1 � 1

#
2

◆
+"

✓
1
#

2

◆

 E)

h
||b), � ), ||2 | ^ 2X1

i
+ "

#
2

 ⇠1
p
�avg

qe_¢max,,

e_nmin,,

r
?

#

+ "

#
2 .

Note that Assumption 2 implies that

lim
#!1

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

= 0,
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which further implies

p
�avg

qe_¢max,,

e_nmin,,

p
? = >

⇣p
#

⌘
,

in turn ultimately implying

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

= >

⇣
#

2
⌘
.

As a result, there exists an #1 � #0, independent of # , ?, and @, such that

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

� 1
#

2 , # � #1.

Defining ⇠2 B ⇠1 +" > 0, also independent of # , ?, and @, we have

infb),
sup

)2B2 ()¢,n )
E) ||b), � ), ||2  ⇠2

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

.

Repeating the same essential argument for

infb)⌫
sup

)2B2 ()¢,n )
E) ||b)⌫ � )⌫ ||2

we obtain, for ⇠3 > 0 defined similarly to ⇠2 > 0,

infb)⌫
sup

)2B2 ()¢,n )
E) ||b)⌫ � )⌫ ||2  ⇠3 �avg

qe_¢max,⌫

e_nmin,⌫

r
@

#
2 .

4. Proof of Corollary 2.4

The assumptions of both Theorems 2.1 and 2.2 are met. Theorem 2.1 supplies the following upper
bounds to the ✓2-error of maximum likelihood estimators:

||b), � )
¢
, ||2  ⇠

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

||b)⌫ � )
¢
⌫ ||2  ⇠ �avg

qe_¢max,⌫

e_nmin,⌫

r
@

#
2 .
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Theorem 2.2 provides the lower bounds on the minimax risks R, ,# and R⌫,# :

R, ,# � ⌫1

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

p
�avg

r
?

#

R⌫,# � ⌫2

 e_nmin,,e_nmax,,

! qe_¢max,,

e_nmin,,

�avg

r
@

#
2 .

Inspecting the two sets of bounds, the assumption that

e_nmax,, = $

⇣e_nmin,,

⌘
and e_nmax,⌫ = $

⇣e_nmin,⌫

⌘

ensures that the two sets of bounds match (up to an unknown, but fixed, constant). As a result, the upper
bounds on the ✓2-error presented in Theorem 2.1 achieve (up to an unknown, but fixed, constant) the
minimax rate of convergence.

5. Proof of Theorem 2.5
For ease of presentation, we first present a general argument for bounding the error of the multivariate
normal approximation, and then show how it can be applied to maximum likelihood estimators of
exponential-families of local dependence random graph models in order to establish the desired result.

Bounding the error of the multivariate normal approximation. Consider a general estimating func-
tion < :R3 ⇥X 7!R which admits the following form:

<() , x) =
 ’
:=1

<: ,: (), , x: ,: ) +
’

1:<; 
<: ,; ()⌫, x: ,;),

and assume <() , x) is thrice continuously differentiable in the elements of ) 2R?+@ . By assumption,
the subgraphs ^: ,; (1  :  ;   ) are mutually independent, implying, for a fixed ) 2R?+@ , that the
collection of random variables <: ,: (), , ^: ,: ) (1  :   ) and <: ,; ()⌫, ^: ,;) (1  : < ;   ) are
likewise mutually independent. As such,

r) <() , x) =
 ’
:=1

r) <: ,: (), , x: ,: ) +
’

1:<; 
r) <: ,; ()⌫, x: ,;) (18)

is a sum of mutually independent random vectors. Assume that

Er) <: ,: ()¢, , ^: ,: ) = 0?+@ , 1  :   

Er) <: ,; ()¢⌫, ^: ,;) = 0?+@ , 1  : < ;   ,
(19)

implying that Er) <()¢, ^) = 0?+@ .
Let ) 2R?+@ and x 2X be fixed. By a multivariate Taylor expansion,

r) <() , ^) = r) <()¢, ^) + r2
) <()¢, ^) () � )

¢) + X, (20)
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where X 2 R?+@ is a vector of remainders given in the Lagrange form, where each of the remainder
terms '8 (8 2 {1, . . . , ? + @}) is given by

'8 =
?+@’
9=1

1
2

"
m

2

m \
2
9

h
r) <( §) (8)

, ^)
i
8

#
(\ 9 � \¢9 )2

+
’

1 9<A ?+@

1
2


m

2

m \ 9 m \A

h
r) <( §) (8)

, ^)
i
8

�
(\ 9 � \¢9 ) (\A � \¢A ),

(21)

where §) (8) = C8 ) + (1� C8) )¢ (for some C8 2 [0,1], 8 2 {1, . . . , ?+@}). Assume that I BVr) <()¢, ^)
is non-singular and that r) <() , x) has a root given by )0 2 R?+@ . Taking ) = )0, we re-arrange (20)
with the observation ^ = x in order to obtain

r) <()¢, x) = r2
) <()¢, x) ()¢ � )0) � X. (22)

Bear in mind, from the form of (18), that r) <()¢, x) is a sum of independent random vectors. Define

_: ,; B
8>><
>>:
I
�1/2 r) <: ,: ()¢, , ^: ,: ), if : = ;

I
�1/2 r) <: ,; ()¢⌫, ^: ,;), if : < ;

, 1  :  ;   ,

and

Y B
’

1:; 
_: ,; .

Observe that, by (19), E Y = 0?+@ and that, by the definition of I, V Y = O?+@ , where O?+@ is the
(? + @)-dimensional identity matrix. Applying Lemma 5.1, for all measurable convex sets C ⇢ R?+@ ,

|P(Y 2 C ) ��?+@ (`?+@ 2 C ) |  (42 (? + @)1/4 + 16)
’

1:; 
E ||_: ,; ||32

 58 (? + @)1/4
’

1:; 
E ||_: ,; ||32.

Normality results for Y can be extended to a standardization of ()¢ � )0) via (22):

Y
⇡= I

�1/2 ⇥
r2
) <()¢, x) ()¢ � )0) � X

⇤
, (23)

where ⇡= indicates equality in distribution.

Multivariate normal approximation for maximum likelihood estimators. Define

<: ,: (), , x: ,: ) B ✓: ,: (), , x: ,: ), 1  :   

<: ,; ()⌫, x: ,;) B ✓: ,; ()⌫, x: ,;), 1  : < ;   .

We next verify that the assumptions placed on <() , x) in the general argument presented above are met
in the case of maximum likelihood estimation for exponential-family local dependence random graphs.
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By Lemma 7.1,

r) <: ,: (), , x: ,: ) = (B: ,: (x: ,: ) �E) B: ,: (^: ,: ), 0@),

r) <: ,; ()⌫, x: ,;) = (0? , B: ,; (x: ,;) �E) B: ,; (^: ,;)),

noting that ) = (), , )⌫) 2R?+@ , implying r) <() , x) = B(x) �E) B(x). Observe that

E
⇥
r) <: ,: ()¢, , ^: ,: )

⇤
= 0?+@ , 1  :   

E
⇥
r) <: ,; ()¢⌫, ^: ,;)

⇤
= 0?+@ , 1  : < ;   ,

implying Er) <()¢, ^) = 0?+@ . Lemma 7.1 additionally establishes that

r2
) <()¢, x) = V B(^) = V (B(^) �E B(^)) = Vr) <()¢, ^),

implying I = V B(^) = r2
) <() , x) = �Er2

) ✓() , ^), which is non-singular for all ) 2 B2 ()¢, n) by
Assumption 2. Restricting to ) 2 B2 ()¢, n), we have verified all conditions placed on <() , x) in the
general argument outlined above. In this case, (23) can be expressed as

Y
⇡= � ()¢)1/2 ()¢ � )) � � ()¢)�1/2

X,

where � ()¢) = V B(^) is the Fisher information matrix evaluated at the data-generating parameter
vector )

¢ 2 R?+@ . The local dependence assumption and the partitioning of the sufficient statistics
vector B(^) = (B, (^, ), B⌫ (^⌫)) imply that

� ()¢) = V B(^) =

 
�, ()¢, ) 0?,@

0@,? �⌫ ()¢⌫)

!
,

where 03,A is the (3 ⇥ A)-dimensional matrix consisting of all zeros, with the definitions

�, ()¢, ) B
 ’
:=1

�Er2
),

✓: ,: ()¢, , ^: ,: )

�⌫ ()¢⌫) B
’

1:<; 
�Er2

)⌫
✓: ,; ()¢⌫, ^: ,;).

The proof is completed by establishing the following two additional results.

I. Convergence rate of the multivariate normal approximation

We establish the convergence rate of the multivariate normal approximation by boundingÕ
1:; E ||_: ,; ||32. In order to do so, we bound each term:

||_: ,: ||2 = ||�, ()¢, )�1/2 ⇥
B: ,: (x: ,: ) �E) B: ,: (^: ,: )

⇤
||2

 |||�, ()¢, )�1/2 |||2 ||B: ,: (x: ,: ) �E) B: ,: (^: ,: ) ||2

 ||B: ,: (x: ,: ) �E) B: ,: (^: ,: ) ||2q
 e_¢min,,

,
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using the bound on the spectral norm |||�, ()¢, )�1/2 |||2 of the matrix �, ()¢, )�1/2:

|||�, ()¢, )�1/2 |||2  1q
_min (�Er2

),
✓()¢, ^))

=
1q

 e_¢min,,

,

which follows from Assumption 2, because if _min (�Er2
),

✓()¢, ^)) is the smallest eigenvalue
of �, ()¢, ) B �Er2

),
✓()¢, ^), then 1 /_min (�Er2

),
✓()¢, ^)) is the largest eigenvalue of

�, ()¢, )�1. By Assumption 1, there exists ⇠, > 0, independent of # , ?, and @, such that

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
, 1  :   ,

which in turn implies the inequality

||B: ,: (x: ,: ) �E) B: ,: (^: ,: ) ||2  p
? ||B: ,: (x: ,: ) �E) B: ,: (^: ,: ) ||1

 2p? ||B: ,: (x: ,: ) ||1

 2p? ⇠,
✓ |A: |

2

◆

 p
? ⇠, �

2
max,

using the inequality
� |A: |

2
�
 |A: |2 /2  �2

max /2. Collecting the above bounds,

||_: ,: ||32 
©≠≠
´
p
?⇠, �

2
maxq

 e_¢min,,

™ÆÆ
¨

3

=
?

3/2
⇠

3
, �

6
max

 
3/2 (e_¢min,, )3/2

,

which implies

 ’
:=1
E ||_: ,: ||32 

?
3/2

⇠
3
, �

6
max

 
1/2 (e_¢min,, )3/2

.

A similar argument will reveal, using Assumption 1 once more, that

sup
x:,; 2X:,;

||B: ,; (x: ,;) �E) B: ,; (^: ,;) ||1  2⇠⌫ |A: | |A; |  2⇠⌫ �2
max,

for 1  : < ;   , which will instead yield the bound

’
1:<; 

E ||_: ,; ||32 
2 @3/2

⇠
3
⌫ �

6
max� 

2
�1/2 (e_¢min,⌫)3/2


2
p

2 @3/2
⇠

3
⌫ �

6
max

 (e_¢min,⌫)3/2
,

noting there are
� 

2
�

between-block subgraphs ^: ,; (1  : < ;   ), as opposed to  within-
block subgraphs ^: ,: (1  :   ) and using the bound

� 
2
�
�  2 /2. Collecting terms and using
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the bound # =
Õ 
:=1 |A: |   �max, we obtain the bound

’
1:; 

E ||_: ,; ||32  �
6
max

"
?

3/2
⇠

3
,

 
1/2 (e_¢min,, )3/2

+
2
p

2 @3/2
⇠

3
⌫

 (e_¢min,⌫)3/2

#

 2
p

2 �6
max

266664
⇠

3
,

vt
?

3

 (e_¢min,, )3
+⇠3

⌫

vt
@

3

 
2 (e_¢min,⌫)3

377775
 2

p
2 �7

max

266664
⇠

3
,

vt
?

3

# (e_¢min,, )3
+⇠3

⌫

vt
@

3

#
2 (e_¢min,⌫)3

377775
.

Thus, there exists a constant ⇠ B (2) (58)
p

2 max{⇠3
, ,⇠

3
⌫} > 0, independent of # , ?, and @,

and a random vector � B � ()¢)�1/2
X, such that, for all measurable convex sets C ⇢ R?+@ , the

error of the multivariate normal approximation is bounded above by

|P(� ()¢)1/2 (b) � )
¢) + � 2 C ) ��3 (`3 2 C ) |

 58 (? + @)1/4
’

1:; 
E ||_: ,; ||32

 ⇠ (? + @)1/4
�

7
max

266664

vt
?

3

(e_¢min,, )3
#

+
vt

@
3

(e_¢min,⌫)3
#

2

377775
.

II. Demonstrating that ||� ()¢)�1/2
X ||2 is small with high probability.

Recall that

� ()¢) =

 
�, ()¢, ) 0?,@

0@,? �⌫ ()¢⌫)

!
,

where

�, ()¢, ) B
 ’
:=1

�Er2
),

✓: ,: ()¢, , ^: ,: )

�⌫ ()¢⌫) B
’

1:<; 
�Er2

)⌫
✓: ,; ()¢⌫, ^: ,;),

which implies that

� ()¢)�1 =

 
�, ()¢, )�1 0?,@

0@,? �⌫ ()¢⌫)�1

!
.

Using Assumption 2,

_min (�, ()¢)) =  e_¢min,, > 0 (24)
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and

_min (�⌫ ()¢⌫)) =
✓
 

2

◆ e_¢min,⌫ > 0. (25)

Using (24) and (25), we can bound ||� ()¢)�1/2
X ||2 by

||� ()¢)�1/2
X ||22 = ||�, ()¢)�1/2

X, ||22 + ||�⌫ ()¢)�1/2
X⌫ ||22

 |||�, ()¢)�1/2 |||22 ||X, ||22 + |||�⌫ ()¢)�1/2 |||2 ||X⌫ ||22


||X, ||22
 e_¢min,,

+
||X⌫ ||22� 

2
� e_¢min,⌫

,

where X, B ('1, . . . , '?) and X⌫ B ('?+1, . . . , '?+@). As a result,

||� ()¢)�1/2
X ||2 

vut ||X, ||22
 e_¢min,,

+
||X⌫ ||22� 

2
� e_¢min,⌫

.

Applying Lemma 5.2,

||X, ||22  ? �
12
max⇠

4
, (⇠, + 2)2

 
2 ||b), � )

¢
, ||41

||X⌫ ||22  4 @ �12
max⇠

4
⌫ (⇠⌫ + 2)2

✓
 

2

◆2
||b)⌫ � )

¢
⌫ ||41.

Using the identity

# =
 ’
:=1

|A: | =  

1
 

 ’
:=1

|A: | =  �avg,

with the definition �avg B  
�1 Õ 

:=1 |A: |, we have the bound

||� ()¢)�1/2
X ||2  ⇠3 �

6
max

vuut
?  

2 ||b), � )
¢
, ||41

 e_¢min,,

+
@

� 
2
�2 ||b)⌫ � )

¢
⌫ ||41� 

2
� e_¢min,⌫

= ⇠3 �
6
max

vut
?  ||b), � )

¢
, ||41e_¢min,,

+
@

� 
2
�
||b)⌫ � )

¢
⌫ ||41e_¢min,⌫

 ⇠3 �
6
max,

vut
? # ||b), � )

¢
, ||41

�avg e_¢min,,

+
@ #

2 ||b)⌫ � )
¢
⌫ ||41

�
2
avg e_¢min,⌫

,

where ⇠3 B 2 max{⇠2
, (⇠, + 2), ⇠2

⌫ (⇠⌫ + 2)} > 0 is a constant independent of # , ?, and @.
By Theorem 2.1, there exist constants ⇠4 > 0, ⇠5 > 0, and #0 � 3, independent of # , ?, and @,
such that, for all # � #0 and with probability at least 1�#�2, the maximum likelihood estimator
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exists, is unique, and satisfies

||b), � )
¢
, ||2  ⇠4

p
�avg

qe_¢max,,

e_nmin,,

r
?

#

and

||b)⌫ � )
¢
⌫ ||2  ⇠5 �avg

qe_¢max,⌫

e_nmin,⌫

r
@

#
2 .

As a result,

||b), � )
¢
, ||1  p

? ||b), � )
¢
, ||2  ⇠4

p
�avg

qe_¢max,,

e_nmin,,

?p
#

||b)⌫ � )
¢
⌫ ||1  p

@ ||b)⌫ � )
¢
⌫ ||2  ⇠5 �avg

qe_¢max,⌫

e_nmin,⌫

@

#

,

which leads to the bound

||� ()¢)�1/2
X ||2  ⇠3 �

6
max

vut
? # ||b), � )

¢
, ||41

�avg e_¢min,,

+
@ #

2 ||b)⌫ � )
¢
⌫ ||41

�
2
avg e_¢min,⌫

 ⇠6 �
6
max

vut
�avg (e_¢max,, )2

?
5

(e_nmin,, )4 e_¢min,, #

+
�

2
avg (e_¢max,⌫)2

@
5

(e_nmin,⌫)4 e_¢min,⌫ #
2

 ⇠6 �
6
max

vut
�avg

(e_¢max,, )2

(e_nmin,, )5

?
5

#

+ �2
avg

(e_¢max,⌫)2

(e_nmin,⌫)5

@
5

#
2 ,

defining ⇠6 B ⇠3 max{⇠4
4 , ⇠

4
5 } > 0. Thus, there exists a constant ⇠ B ⇠6 > 0, independent of # ,

?, and @, such that �B � ()¢)�1/2
X satisfies

P
©≠
´
||�||2  ⇠ �

6
max

vut
�avg

(e_¢max,, )2

(e_nmin,, )5

?
5

#

+ �2
avg

(e_¢max,⌫)2

(e_nmin,⌫)5

@
5

#
2
™Æ
¨

� 1 � 1
#

2 .

Conclusion of proof. We have thus shown—recycling notation of constants—that there exist ⇠1 > 0,
⇠2 > 0, and #0 � 3, independent of # , ?, and @, and a random vector � 2 R?+@ such that, for all
integers # > #0 and all measurable convex sets C ⇢ R?+@ ,

|P(� ()¢)1/2 (b) � )
¢) + � 2 C ) ��3 (`3 2 C ) |

 ⇠1 (? + @)1/4
�

7
max

266664

vt
?

3

(e_¢min,, )3
#

+
vt

@
3

(e_¢min,⌫)3
#

2

377775
,



Supplement to “Rates of convergence for local dependence random graph models” 27

where � satisfies

P
©≠
´
||�||2  ⇠2 �

6
max

vut
�avg

(e_¢max,, )2

(e_nmin,, )5

?
5

#

+ �2
avg

(e_¢max,⌫)2

(e_nmin,⌫)5

@
5

#
2
™Æ
¨

� 1 � 1
#

2 .

5.1. Auxiliary results for Theorem 2.5

We first recall a theorem due to Raič (2019), restated in Lemma 5.1.

Lemma 5.1 (Theorem 1.1, Raič (2019)). Consider a sequence of independent random vectors given

by ]1,]2, . . . 2R? with E]8 = 0 for all 8 2 {1,2, . . .}. Define

Y= B
=’
8=1

]8 , = 2 {1,2, . . .},

and assume that V Y= = O? . Then, for all measurable convex sets C ⇢ R? ,

��P(Y= 2 C ) ��? (`? 2 C )
��  (42 ?1/4 + 16)

=’
8=1
E ||]8 ||32,

where `? is a multivariate normal random vector with mean vector 0? and covariance matrix O? and

�? is the corresponding probability distribution.

PROOF OF LEMMA 5.1. The lemma is proved as Theorem 1.1 of Raič (2019).

5.2. Auxiliary results for Part II in the proof of Theorem 2.5

Lemma 5.2. Under the assumptions of Theorem 2.5,

||X, ||22  ? �
12
max⇠

4
, (⇠, + 2)2

 
2 ||b), � )

¢
, ||41

||X⌫ ||22  4 @ �12
max⇠

4
⌫ (⇠⌫ + 2)2

✓
 

2

◆2
||b)⌫ � )

¢
⌫ ||41,

where ||X, ||22 and ||X⌫ ||22 are the normed remainder terms in the proof of Theorem 2.5.

PROOF OF LEMMA 5.2. We bound the remainder terms that arose out of the multivariate Taylor
approximation in the proof of Theorem 2.5 using derivatives. Recall that each of the remainder terms
'8 (8 2 {1, . . . , ? + @}) in the Lagrange form is given by

'8 =
?+@’
9=1

1
2

"
m

2

m \
2
9

h
r) <( §) (8)

, ^)
i
8

#
(\ 9 � \¢9 )2

+
’

1 9<A ?+@

1
2


m

2

m \ 9 m \A

h
r) <( §) (8)

, ^)
i
8

�
(\ 9 � \¢9 ) (\A � \¢A ),

(26)
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where §) (8) = C8 ) + (1 � C8) )¢ (for some C8 2 (0,1), 8 2 {1, . . . , ? + @}). If

sup
)2R?+@ : ||)�)¢ ||1 ||b)�)¢ ||1

���� m
2

m \ 9 m \A
[r) <() , ^)]8

����  "8 , 1  9  A  ?,

for all 8 2 {1, . . . , ?} and

sup
)2R?+@ : ||)�)¢ ||1 ||b)�)¢ ||1

���� m
2

m \ 9 m \A
[r) <() , ^)]8

����  "8 , 1 + ?  9  A  ? + @,

for all 8 2 {1 + ?, . . . , ? + @}, then the Lagrange remainders are bounded above by

|'8 | 

8>>>>><
>>>>>:

"8

2
||b), � )

¢
, ||21 if 8 2 {1, . . . , ?}

"8

2
||b)⌫ � )

¢
⌫ ||21 if 8 2 {? + 1, . . . , ? + @}

on the set
n
), 2R? : ||), � )

¢
, ||1  ||b), � )

¢
, ||1

o
⇥

n
)⌫ 2R? : ||)⌫ � )

¢
⌫ ||1  ||b), � )

¢
⌫ ||1

o
.

For the rest of the proof, assume that ) belongs to the above set. By Assumption 2, there exists ⇠, > 0
and ⇠⌫ > 0, independent of # , ?, and @, such that

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
, 1  :   ,

and

sup
x:,; 2X:,;

||B: ,; (x: ,;) ||1  ⇠⌫ |A: | |A; |, 1  : < ;   ,

Lemmas 5.3 and 5.4 establish that

���� m
2

m \ 9 m \⌘
[r) ✓() , ^)]8

���� 

8>>>>>><
>>>>>>:

�
6
max⇠

3
, (⇠, + 2)  , (8, 9 , ⌘) 2 {1, . . . , ?}3

2 �6
max⇠

2
⌫ (⇠⌫ + 2)

� 
2
�
, (8, 9 , ⌘) 2 {? + 1, . . . , ? + @}3

0 otherwise.

As a result, when <() , ^) = ✓() , ^) in the proof of Theorem 2.5,

|'8 | 
8>>><
>>>:

�
6
max⇠

3
, (⇠, + 2)  ||b), � )

¢
, ||21, 1  8  ?

2 �6
max⇠

2
⌫ (⇠⌫ + 2)

� 
2
�
||b)⌫ � )

¢
⌫ ||21, ? + 1  8  ? + @,
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which implies the bounds

||X, ||22 
?’
8=1

'
2
8  ? �

12
max⇠

4
, (⇠, + 2)2

 
2 ||b), � )

¢
, ||41

||X⌫ ||22 
?+@’
8=?+1

'
2
8  4 @ �12

max⇠
4
⌫ (⇠⌫ + 2)2

✓
 

2

◆2
||b)⌫ � )

¢
⌫ ||41.

Lemma 5.3. Consider an exponential-family local dependence random graph model which satisfies

Assumption 1. Then, for all (8, 9 , ⌘) 2 {1, . . . , ?}3
,

����m
2 [r) ✓() , x)]8
m\⌘ m\ 9

����  �
6
max⇠

2
, (⇠, + 2).

PROOF OF LEMMA 5.3. By Lemma 7.1, the second derivatives of the log-likelihood taken with
respect to the natural parameters are equal to the variances and covariances of the sufficient statistics
of the exponential family, implying, for all (8, 9) 2 {1, . . . , ?}2, that

m
2
✓() , x)

m\ 9 m\8
=

m [r) ✓() , x)]8
m\ 9

= C)

 
 ’
:=1

B: ,: ,8 (^: ,: ),
 ’
:=1

B: ,: , 9 (^: ,: )
!
,

where C) denotes the covariance operator corresponding to the probability distribution P) . By the
independence of the block-based subgraphs ^: ,: (1  :   ),

C)

 
 ’
:=1

B: ,: ,8 (^: ,: ),
 ’
:=1

B: ,: , 9 (^: ,: )
!

=
 ’
:=1
C) (B: ,: ,8 (^: ,: ), B: ,: , 9 (^: ,: )).

Taking ⌘ 2 {1, . . . , ?} and using the triangle inequality, we obtain the bound

����m
2 [r) ✓() , x)]8
m\⌘ m\ 9

���� 
 ’
:=1

���� m

m \⌘
C) (B: ,: ,8 (^: ,: ), B: ,: , 9 (^: ,: ))

���� . (27)

To proceed from here, we apply Lemma 7.3. To do so, we verify the assumptions of Lemma 7.3. By
Assumption 1, there exists ⇠, > 0 such that

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
 ⇠,

2
�

2
max, : 2 {1, . . . , },

which implies, for all : 2 {1, . . . , }, that

sup
x:,: 2X:,:

||B: ,: (x: ,: ) �E) B: ,: (^: ,: ) ||1  2⇠,
✓ |A: |

2

◆
 ⇠, �

2
max.
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Taking*1 = (⇠, /2) �2
max > 0 and*2 =⇠, �

2
max > 0 and applying Lemma 7.3,

���� m

m \⌘
C) (B: ,: ,8 (^: ,: ), B: ,: , 9 (^: ,: ))

���� 
⇣
⇠, �

2
max

⌘ ⇣
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2
max

⌘ ⇣
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2
max + 2

⌘

 �
6
max⇠

2
, (⇠, + 2).

Hence, for all {8, 9 , ⌘} ✓ {1, . . . , ?},
����m

2 [r) ✓() , x)]8
m\⌘ m\ 9

���� 
 ’
:=1

�
6
max⇠

2
, (⇠, + 2)  �

6
max⇠

2
, (⇠, + 2)  .

Lemma 5.4. Consider an exponential-family local dependence random graph model which satisfies

Assumption 1. Then, for all (8, 9 , ⌘) 2 {? + 1, . . . , ? + @}3
,

����m
2 [r) ✓(); x)]8
m\⌘ m\ 9

����  2 �6
max⇠

2
⌫ (⇠⌫ + 2)

✓
 

2

◆
.

PROOF OF LEMMA 5.4. Lemma 5.4 is proved similarly to Lemma 5.3, with the notable exception
that the sum in (27) is over the index set 1  : < ;   , for the between-block subgraphs. As a result,
the factor of  in the bound in Lemma 5.3 is replaced with

� 
2
�
. The bound |A: | |A; |  �

2
max is used

in place of
� |A: |

2
�
 �

2
max, resulting in an extra factor of 2. The rest of the proof can be repeated

unchanged, with the appropriate adjustments to indexing (e.g., using ⇠⌫ > 0 in place of ⇠, > 0).

Lemma 5.5. Let 01, 02, 11, 12 2R. Then

|01 11 � 02 12 |  |01 | |11 � 12 | + |12 | |01 � 02 |.

PROOF OF LEMMA 5.5. Write

|01 11 � 02 12 | = |01 11 � (02 � 01 + 01) 12 |

= |01 11 � 12 (02 � 01) � 01 12 |

= |01 (11 � 12) � 12 (02 � 01) |

 |01 | |11 � 12 | + |12 | |01 � 02 |.
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6. Proof of Theorem 2.7

Observe that both

b�, B
1
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�
B: ,: (^: ,: ) � B, (^, )
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are unbiased estimators of
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respectively, and defining

B, (^, ) B 1
 

 ’
:=1

B: ,: (^: ,: ) and B⌫ (^⌫) B
1� 
2
� ’

1:<; 
B: ,; (^: ,;).

For ease of presentation, we will write B, ⌘ B, (^, ) and B⌫ ⌘ B⌫ (^⌫). Note that the Fisher informa-
tion matrices �Er2

),
✓() , ^) and �Er2

)⌫
✓() , ^) of canonical exponential families are the variance-

covariance matrices of the vectors of sufficient statistics B, (^) and B⌫ (^), respectively.
We first consider the within-block case and the term b�, ; we discuss extensions to prove the result

for b�⌫ afterwards. We can represent b�, by

b�, =
1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> �
 

1
 

 ’
:=1

B: ,: (^: ,: )
!  

1
 

 ’
:=1

B: ,: (^: ,: )
!>

=
1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> � B, B
>
, .

By the triangle inequality,

|||b�, � e�, |||2 
�����
�����
�����
1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> �e-, e->, � e�,
�����
�����
�����
2

+
������
B, B

>
, �e-, e->, ������

2 ,

defining

e-, B
1
 

 ’
:=1
E B: ,: (^: ,: ),
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and in the between-block case, defining

e-⌫ B
1� 
2
� ’

1:<; 
E B: ,; (^: ,;).

The advantage of this is two-fold:

1. First, we can express

1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> �e-, e->,

=
1
 

 ’
:=1

(B: ,: (^: ,: ) �e-, ) (B: ,: (^: ,: ) �e-, )>,

which is a sum of independent matrices, and

2. Second,

E

"
1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> �e-, e->,
#

= e�, ,

meaning the statistic is an unbiased estimator of e�, .

Defining

b̊�, B
1
 

 ’
:=1

B: ,: (^: ,: ) B: ,: (^: ,: )> �e-, e->, ,

and in the between-block case

b̊�⌫ B
1� 
2
� ’

1:<; 
B: ,; (^: ,;) B: ,; (^: ,;)> �e-⌫ e->⌫,

we can therefore apply the matrix Bernstein’s inequality to obtain

P
⇣
|||b̊�, � e�, |||2 � C

⌘
 2 ? exp

 
�  C

2

2 ?⇠2
, �

4
max (e_¢max,, + 2 C /3)

!

 2 exp

 
�  C

2

2 ?⇠2
, �

4
max (e_¢max,, + C)

+ log(?)
!
,

noting that, by Assumption 1, there exists constant ⇠, > 0, independent of # , ?, and @, such that

max
:2{1,..., }

sup
x:,: 2X:,:

||B: ,: (x: ,: ) ||1  ⇠,

✓ |A: |
2

◆
 ⇠, �

2
max,
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which implies the bound

max
:2{1,..., }

sup
x:,: 2X:,:

||B: ,: (x: ,: ) �e-, ||2  2p?⇠, �
2
max,

using the triangle inequality and the inequality ||z ||2 
p
? ||z ||1 (for z 2R?). Choosing

C = V,

s
2 ?⇠2

, �
4
max e_¢max,, log(?)

 

> 0,

for some V, > 0 to be specified later, we obtain

P
⇣
|||b̊�, � e�, |||2 � C

⌘
 2 exp

©≠≠
´
�

V
2
, log(?)e_¢max,,

e_¢max,, + V,
q

2 ?⇠2
, �

4
max e_¢max,, log(?) / 

+ log(?)
™ÆÆ
¨
,

By Assumption 4, the largest block size �max B max{|A1 |, . . . , |A |} satisfies

�max  min
8>><
>>:

 
# e_¢max,,

�avg ?2

!1/4

,

 
#

2 e_¢max,⌫

4 �2
avg @

2

!1/4 9>>=
>>;
,

which, using the identity # = �avg  , implies that

s
?⇠

2
, �

4
max e_¢max,, log(?)

 

 e_¢max,, ,

resulting in the inequality

P
©≠≠
´
|||b̊�, � e�, |||2 � V,

s
2 ?⇠2

, �
4
max e_¢max,, log(?)

 

™ÆÆ
¨

 2 exp

 
�

V
2
, log(?)

1 +
p

2⇠2
, V,

+ log(?)
!

= 2 exp

 
�

 
V

2
,

1 +
p

2⇠2
, V,

� 1

!
log(?)

!
.

To obtain the desired probability guarantee, we require

V
2
,

1 +
p

2⇠2
, V,

� 1 = 2,

which in turn requires a solution V, 2 (0,1) to the quadratic equation

V
2
, � 3

p
2⇠2

, V, � 3 = 0.
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Using the quadratic formula, such a root, which incidentally is independent of # , ?, and @, is given by

V, =
3
p

2
2

⇠
2
, + 1

2

q
18⇠4

, + 12 > 0.

Thus, there exists a constant ⇠1 > 0, independent of # , ?, and @, such that

P

 
|||b̊�, � e�, |||2 < ⇠1 �

2
max

qe_¢max,,

r
? log(?)

 

!
� 1 � exp(�2 ?) � 1 � 2

#
2 ,

with the last inequality following from the assumption that ? � log(#). Using the identity # = �avg  ,

P

 
|||b̊�, � e�, |||2 < ⇠1 �

2
max

q
�avg e_¢max,,

r
? log(?)

#

!
� 1 � 2

#
2 .

Next, we handle the term |||B, B
>
, �e-, e->, |||2. We first use the inequality

|||B, B
>
, �e-, e->, |||2  |||B, B

>
, �e-, e->, |||�

where ||| · |||� denotes the Frobenius norm. By Lemma 6.1,

|||B, B
>
, �e-, e->, |||�  2⇠, �

2
max

p
? ||B, �e-, ||2 =

2⇠, �
2
max

p
?

 

||B, (^) �E B, (^) ||2,

noting that ||B: ,: (x: ,: ) ||1  ⇠, �
2
max, by Assumption 1 as discussed above. By Lemma 7.1,

r), ✓()¢, ^) = B, (^) �E B, (^),

which allows us to apply Lemma 1.1 with X, > 0 to obtain

P (||B, (^) �E B, (^) ||2  X, ) � 1 � exp

 
�

X
2
,

5 e_¢max,, +⇠, �
2
max

p
? X,

+ log(5) ?
!
.

This is close to the same inequality that we arrived at in the proof of Theorem 1. Choosing

X, = W,

q
?  e_¢max,, > 0,

for some W, > 0 to be specified, the probability

P
⇣
||B, (^) �E B, (^) ||2  W,

q
?  e_¢max,,

⌘

is bounded below by

1 � exp

 
�

W
2
, ?  e_¢max,,

5 e_¢max,, +⇠, �
2
max ?

p
 e_¢max,, W,

+ log(5) ?
!

= 1 � exp

 
�

W
2
, ?  

5 +⇠, �
2
max ?

p
 W,

+ log(5) ?
!
.
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Under Assumption 4, the largest block size �max B max{|A1 |, . . . , |A |} satisfies

�max  min
8>><
>>:

 
# e_¢max,,

�avg ?2

!1/4

,

 
#

2 e_¢max,⌫

4 �2
avg @

2

!1/4 9>>=
>>;
,

which implies that

�
2
max ?

p
   since �max 

✓
 

?
2

◆1/4
.

This in turn implies that

P
⇣
||B, (^) �E B, (^) ||2  W,

q
?  e_¢max,,

⌘
� 1 � exp

 
�

W
2
, ?

5 +⇠, W,
+ log(5) ?

!

= 1 � exp

 
�

 
W

2
,

5 +⇠, W,
+ log(5)

!
?

!
.

To obtain the desired probability guarantee, we require

W
2
,

5 +⇠, W,
+ log(5) = 2,

which in turn requires a solution W, 2 (0,1) to the quadratic equation

W
2
, �⇠, (2 + log(5)) W, � 5 (2 + log(5)) = 0.

Using the quadratic formula, such a root, which is incidentally independent of # , ?, and @, is given by

W, =
⇠, (2 + log(5)) +

q
⇠

2
, (2 + log(5))2 + 20 (2 + log(5))

2
> 0,

which in turn establishes there exists a constant ⇠2 > 0, independent of # , ?, and @, such that

P
⇣
||B, (^) �E B, (^) ||2  ⇠2

q
?  e_¢max,,

⌘
� 1 � exp(�2?) � 1 � 2

#
2 ,

where the last inequality follows from the assumption that ? � log(#). Finally,

|||B, B
>
, �e-, e->, |||2  ⇠3 �

2
max

qe_¢max,,

r
?

2

 

,

with probability at least 1 � 2#�2, defining ⇠3 B 2⇠,⇠2 > 0. Using the identity # = �avg  ,

|||B, B
>
, �e-, e->, |||2  ⇠3 �

2
max

q
�avg e_¢max,,

r
?

2

#

,

with probability at least 1 � 2#�2.
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Collecting results, we have shown that the event

|||b�, � e�, |||2  ⇠ �
2
max

q
�avg e_¢max,,

 r
? log(?)

#

+
r
?

2

#

!
,

occurs with probability at least 1 � 2#�2.
We can prove a similar bound on |||b�⌫�e�⌫ |||2 by making appropriate adjustment to indexing of certain

quantities and replacing  by
� 

2
�

in all places, establishing that the event

|||b�⌫ � e�⌫ |||2  ⇠ �
2
max �avg

qe_¢max,⌫
©≠
´
r
@ log(@)
#

2 +

s
@

2

#
2
™Æ
¨
,

occurs with probability at least 1 � 2#�2.

6.1. Auxiliary results for Theorem 2.7

Lemma 6.1. Let v 2R? , w 2R? , and " > 0 be such that max{||v ||1, ||w ||1}  " . Then

|||v v> � w w
> |||�  2"p

? ||v � w ||2.

PROOF OF LEMMA 6.1. We start by writing

|||v v> � w w
> |||2� =

?’
8=1

?’
9=1

(E8 E 9 � F8 F 9 )2

= "
4

?’
8=1

?’
9=1

⇣
E8 E 9

"
2 �

F8 F 9

"
2

⌘2

 "
4

?’
8=1

?’
9=1

⇣���E8 � F8
"

��� + ���E 9 � F 9
"

���⌘2
,
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where the inequality follows from Lemma 6.2. Next, noting that " > 0, we have

"
4

?’
8=1

?’
9=1

⇣���E8 � F8
"

��� + ���E 9 � F 9
"

���⌘2
= "

4
?’
8=1

?’
9=1

✓ |E8 � F8 |
"

+
|E 9 � F 9 |

"

◆2

= "
4

?’
8=1

?’
9=1

( |E8 � F8 | + |E 9 � F 9 |)2

"
2

 "
4

?’
8=1

?’
9=1

 
(E8 � F8)2

"
2 /2

+
(E 9 � F 9 )2

"
2 /2

!

= 2"2
?’
8=1

?’
9=1

⇣
(E8 � F8)2 + (E 9 � F 9 )2

⌘

= 4 ? "2
?’
8=1

(E8 � F8)2

= 4 ? "2 ||v � w ||22,

where the inequality follows by Titu’s lemma. As a result,

|||v v> � w w
> |||�  2"p

? ||v � w ||2,

for all v 2R? and w 2R2 with ||v ||1  " and ||w ||1  " .

Lemma 6.2. For every (01, 02, 11, 12) 2 [�1,1]4
, we have |01 02 � 11 12 |  |01 � 11 | + |02 � 12 |.

PROOF OF LEMMA 6.2. Start by defining a function 6 : [0,1] 7! [�1,1] by

6(C) = (C 01 + (1 � C) 11) (C 02 � (1 � C) 12), C 2 [0,1],

for a given (01, 02, 11, 12) 2 [�1,1]4. Then, by the product rule,

6
0(C) = (01 � 11) (C 02 � (1 � C) 12) + (02 � 12) (C 01 + (1 � C) 11).

By the triangle inequality, for all C 2 [0,1],

|60(C) |  |01 � 11 | |C 02 � (1 � C) 12 | + |02 � 12 | |C 01 + (1 � C) 11 |

 |01 � 11 | + |02 � 12 |,
(28)

as (01, 02, 11, 12) 2 [�1,1]4, by assumption, ensuring |C 08 � (1 � C) 18 |  1 (8 2 {1,2}). Lastly,

|01 02 � 11 12 | = |6(1) � 6(0) | = |60(C¢) |  |01 � 11 | + |02 � 12 |,

where the mean value theorem guarantees the existence of some C¢ 2 [0,1] and the upper-bound follows
from (28) which holds for all C 2 [0,1].
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7. Auxiliary results for exponential families
Lemma 7.1. Consider a random vector _ with finite support Y (i.e., |Y | < 1) and assume that the

probability mass function 5) :Y 7! (0,1) belongs to an <-dimensional exponential family, i.e.,

5) (y) = ⌘(y) exp (h) , B(y)i � k())) , y 2Y, ) 2R<.

Then

r) k()) = E) B(_)

r) ✓() , y) = B(y) �E) B(_)

r2
) k()) = �r2

) ✓() , y) = V) B(_).

PROOF OF LEMMA 7.1. All results follow from Propositions 3.8 and 3.10 of Sundberg (2019).

Lemma 7.2. Consider a random vector _ with finite support Y (i.e., |Y | < 1) and assume that the

probability mass function 5) :Y 7! (0,1) belongs to an <-dimensional exponential family, i.e.,

5) (y) = ⌘(y) exp (h) , B(y)i � k())) , y 2Y, ) 2R<.

Then

r) ✓() ,_) �Er) ✓() ,_) = B(_) �E B(_), ) 2R<,
and

sup
)2R<

||r) ✓() ,_) �Er) ✓() ,_) ||1 = ||B(_) �E B(_) ||1 = ||r) ✓()¢,_) ||1.

PROOF OF LEMMA 7.2. Applying Lemma 7.1, r) ✓() , y) = B(y) �E) B(_). Hence, for all ) 2R<,

r) ✓() ,_) �Er) ✓() ,_) = B(_) �E) B(_) �E B(_) +EE) B(_) = B(_) �E B(_),

which implies the final result

sup
)2R<

||r) ✓() ,_) �Er) ✓() ,_) ||1 = sup
)2R<

||B(_) �E B(_) ||1 = ||B(_) �E B(_) ||1.

Lemma 7.3. Let _ be a random vector with finite support Y (i.e., |Y | < 1) and assume that the

distribution of _ belongs to an exponential family with with probability mass functions of the form

5) (y) = ⌘(y) exp(h) , yi � k())), y 2Y, ) 2R<.

Assume that there exist constants*1 > 0 and*2 > 0 such that, for all C 2 {1, . . . ,<},

|.C |  *1 and |.C �E) .C |  *2, P-almost surely.

Then, for all (8, 9 , ⌘) 2 {1, . . . ,<}3
,���� m

m \⌘
C) (.8 , . 9 )

����  2*1*2 (*2 + 2).
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PROOF OF LEMMA 7.3. Let (8, 9 , ⌘) 2 {1, . . . ,<}3 and define `C ()) B E) .C (C 2 {1, . . . ,<}. Then

m

m \⌘
C) (.8 , . 9 ) =

m

m \⌘
E) [.8. 9 � `8 ()) ` 9 ())]

=
m

m \⌘

’
y2Y

⇥
H8 H 9 � `8 ()) ` 9 ())

⇤
5) (y)

=
’
y2Y


5) (y)

m

m \⌘

⇥
H8 H 9 � `8 ()) ` 9 ())

⇤
+

⇥
H8 H 9 � `8 ()) ` 9 ())

⇤ m

m \⌘
5) (y)

�
.

Using Lemma 7.1 and applying the chain rule,

m

m \⌘
5) (y) =

m

m \⌘
⌘(y) exp(h) , yi � k())) = [H⌘ � `⌘ ())] 5) (y).

Hence,

m

m \⌘
C) (.8 , . 9 ) = E) [(.8. 9 � `8 ()) ` 9 ())) (.⌘ � `⌘ ()))] �

m

m \⌘

⇥
`8 ()) ` 9 ())

⇤
.

We next compute, using Lemma 7.1,

m

m \⌘

⇥
`8 ()) ` 9 ())

⇤
= `8 ())C) (. 9 , .⌘) + ` 9 ())C) (.8 , .⌘)

= `8 ())E) [. 9 .⌘ � ` 9 ()) `⌘ ())] + ` 9 ())E) [.8.⌘ � `8 ()) `⌘ ())] .

By Jensen’s inequality and the triangle inequality
���� m

m \⌘
C) (.8 , . 9 )

����  E)
⇥��(.8. 9 � `8 ()) ` 9 ()))�� | (.⌘ � `⌘ ())) |⇤

+ |`8 ()) | E)
��
. 9 .⌘ � ` 9 ()) `⌘ ())

��
+ |` 9 ()) | E) |.8.⌘ � `8 ()) `⌘ ()) | .

The assumption there exist constants *1 > 0 and *2 > 0 such that |.C |  *1 for all C 2 {1, . . . ,<} and
|.C � `C ()) | *2 (C 2 {1, . . . ,<}) hold P-almost surely implies that |`C ()) | *1 for all C 2 {1, . . . ,<},
and, through an application of Lemma 5.5, that

��
. 9 .⌘ � ` 9 ()) `⌘ ())

��  |. 9 | |.⌘ � `⌘ ()) | + |`⌘ ()) | |. 9 � ` 9 ()) |  2*1*2.

Hence, ���� m

m \⌘
C) (.8 , . 9 )

����  2*1*
2
2 + 4*1*2 = 2*1*2 (*2 + 2).
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Lemma 7.4. Consider a random vector _ with finite support Y (i.e., |Y | < 1) and assume that the

distribution of _ belongs to an exponential family with probability mass functions of the form

P) (_ = y) = ⌘(y) exp (h) , B(y)i � k())) , y 2Y, ) 2R<.

Then for all functions 5 :Y 7!R,

m

m \8
E) 5 (_) = E) [ 5 (_) (B8 (_) �E) B8 (_))],

for all 8 2 {1, . . . ,<}.

PROOF OF LEMMA 7.4. Write

m

m \8
E) 5 (_) =

m

m \8

’
y2Y

5 (y) ⌘(y) exp (h) , B(y)i � k()))

=
’
y2Y

5 (y) ⌘(y)

m

m \8
exp (h) , B(y)i � k()))

�

=
’
y2Y

5 (y) ⌘(y) exp (h) , B(y)i � k())) (B8 (y) �E) B8 (_))

= E) [ 5 (_) (B8 (_) �E) B8 (_))],

as applying Lemma 7.1 shows that

m

m \8
k()) = E) B8 (^), 8 = 1, . . . ,<.
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