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Abstract

One of the first steps in applications of statistical network analysis is frequently to produce summary charts of im-
portant features of the network. Many of these features take the form of sequences of graph statistics counting the
number of realized events in the network, examples of which include the degree distribution, as well as the edgewise
shared partner distribution, and more. We provide conditions under which the empirical distributions of sequences of
graph statistics are consistent in the `∞-norm in settings where edges in the network are dependent. We accomplish
this by elaborating a weak dependence condition which ensures that we can obtain exponential inequalities which
bound probabilities of deviations of graph statistics from the expected value. We apply this concentration inequality
to empirical distributions of sequences of graph statistics and derive non-asymptotic bounds on the `∞-error which
hold with high probability. Our non-asymptotic results are then extended to demonstrate uniform convergence almost
surely in selected examples. We illustrate theoretical results through examples, simulation studies, and an application.

Keywords: Statistical network analysis, Network data, Empirical distributions of graph statistics,
2020 MSC: Primary 62H12, Secondary 62G30

1. Introduction

We consider simple random graphs X which are defined on a set of N ≥ 3 nodes, which we take without loss to
be the set N B {1, . . . ,N} throughout. The edge variables in X are then given by

Xi, j =

1 nodes i and j are connected in the graph
0 otherwise

, for all (i, j) ∈ N ×N.

We assume that Xi,i = 0 for all i ∈ N with probability 1, and in the case of undirected graphs, we assume that Xi, j = X j,i

for all {i, j} ⊂ N with probability 1. We denote the support of X by X and throughout consider probability spaces
(X,P(X),P), where P(X) is the power set of X and denote the corresponding expectation operator by E.

In this work, we will be interested in the empirical distributions of sequences of graph statistics defined around a
sequence of events. We consider sequences of mutually exclusive events G0,m,G1,m, . . . ,Gp,m (m ∈ {1, . . . ,M}) defined
around the random graph X and a corresponding sequence of graph statistics s : X 7→ Rp+1 which are defined to be

sk(X) B
M∑

m=1

1(Gk,m), k ∈ {0, 1, . . . , p}. (1)

The corresponding empirical distribution F̂N : X 7→ [0, 1]p+1 is then defined to be

F̂N,k(X) B
1
M

sk(X), k ∈ {0, 1, . . . , p}. (2)
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Fig. 1: (left) A visualization of a collaboration network consisting of set of researchers as nodes, where edges correspond to co-authorship. (right)
The empirical degree distribution of the collaboration network. This network data set is maintained by Rossi and Ahmed [27].

A key example is the degree distribution. Let Gd,i be the event that node i ∈ N has degree d ∈ {0, 1, . . . ,N − 1}. Then

sd(X) =

N∑
i=1

1(Gd,i) =

N∑
i=1

1

 ∑
j∈N\{i}

Xi, j = d

 , d ∈ {0, 1, . . . ,N − 1}, (3)

in which case
F̂N,d(X) =

sd(X)
N

∈ [0, 1], for d ∈ {0, 1, . . . ,N − 1}.

In words, sd(X) counts the number of nodes with exactly d ∈ {0, 1, . . . ,N − 1} connections to other nodes in the
network X and F̂N,d(X) represents the proportion of nodes which have degree precisely equal to d in the network X.
We visualize an example of a network and corresponding empirical degree distribution in Fig. 1. In this example,
observe that dim(F̂N(X)) = N. This work considers scenarios in which the dimension of the vectors F̂N(X) encoding
empirical distributions of sequences of graph statistics are allowed to grow unbounded with the size of the graph N.

It is natural to ask under what conditions can we expect F̂N(X) to provide an accurate estimate of the true under-
lying distribution of the sequence of graph statistics. We define this distribution to be FN : X 7→ [0, 1]p+1, where

FN,k B E F̂N,k(X) =
1
M

M∑
m=1

P(Gk,m), k ∈ {0, 1, . . . , p},

represents the theoretical marginal probabilities. If the indicator random variables 1(Gk,m) (m ∈ {1, . . . ,M}) are
exchangeable, then FN,k = P(Gk,m) for all m ∈ {1, . . . ,M}, which is analogous to the setting of an empirical distribution
based on a random sample. A notable difference in this work is that we will be considering settings where we obtain
only a single observation of a network. As such, we do not have the benefit of replication and empirical distributions
of graph statistics will be based on only a single observation of the network. The interpretation of what would be
the true distribution FN is then slightly different in this context. When considering the degree distribution, we can
understand the marginal probability FN,k ∈ [0, 1] to represent the probability that a randomly selected node i ∈ N

in the network will have degree equal to k. In a broader context, the results in this work establish conditions under
which the empirical distributions F̂N(X) of sequences of graph statistics will be stable, in the sense that deviations
||F̂N(X) − FN ||∞ will be small with high probability provided the size of the network N is sufficiently large.

A key challenge to this problem lies in the fact that the random variables F̂N,0(X), . . . , F̂N,p(X) will generally be
dependent, even when the edge variables in the random graph are independent, and the derivation of concentration
inequalities for dependent random variables is highly non-trivial. A case in point is the degree distribution, as even if
the edge variables are independent, the degrees of nodes i ∈ N and j ∈ N \ {i} will be dependent as both depend on the
value of edge variable Xi, j. While cases of independent edge variables might be handled with the bounded difference
inequality, the assumption that edge variables in a network are independent can be heroic in many applications,
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especially in applications in social network analysis where it has long been observed that edges are dependent [e.g.,
13, 16]. To overcome this challenge, we develop a novel concentration inequality based on martingale decompositions
for random graphs with dependent edges which enables us to cover a wide range of applications. We demonstrate the
applicability of our theory through mathematical examples which are presented as corollaries and through simulation
studies and a network data application.

The main contributions of this work include:

1. Deriving a non-asymptotic bound on the error ||F̂N(X) − FN ||∞ which holds with high probability under weak
assumptions on the dependence structure of the random graph;

2. Establishing a form of uniform convergence by demonstrating that ||F̂N(X) − FN ||∞ converges almost surely to
0 as N → ∞ in various theoretical applications which demonstrate the applicability of the main results;

3. Conducting simulation studies which showcase the empirical performance of the theoretical results;

4. Demonstrating the theoretical results through an application to a school classes network data set, which facili-
tates an exploration of rates of convergence through a specific sampling mechanism.

The rest of the paper is organized as follows. Section 1.1 reviews related work. Theoretical results are presented
in Section 2, with simulation studies and empirical results being presented in Section 3. We present an application of
our theory to a network data set in Section 4, and conclude with a short discussion of the contributions in Section 5.

1.1. Related work

This work establishes the first results which prove the consistency of empirical distributions of sequences of graph
statistics for a general class of random graphs which allow edges to be dependent. Notably, this work covers a
wide range of sequences of graph statistics, whereas much of the existing literature focuses on specific sequences,
predominantly the degree distribution of a network. We review related work which is closely related to the problem
studied here following two main approaches.

There are a number of works which establish limiting distributions of sequences of graph statistics, facilitating
inference on the distributions of sequences of graph statistics through an asymptotic approximation. Along this vein,
some examples include work by Krivitsky et al. [22], who established the limiting degree distribution of a class of
sparse Bernoulli random graph models, and Britton [5], who established (among other theoretical results) the limiting
degree distribution of directed preferential attachment models, building on other work within this class of models [e.g.,
3]. We take a different approach in this work and focus on establishing the consistency of empirical distributions of
sequences of graph statistics as a means of facilitating inference on the distributions of sequences of graph statistics,
in contrast to using asymptotic approximations of distributions.

Along a different inferential goal, there are a number of works which aim to estimate unknown degree distributions
(or other quantities) of large networks through sampling. Examples include works by Antunes et al. [1], Zhang et al.
[35], and Ribeiro and Towsley [25]. The inferential goal of these works is distinct from the goal of this work and that
of the works cited in the previous paragraph. This distinction may be characterized as the differences between finite
population versus super population inference in statistical network analysis applications [29], which can be understood
in the following way. The work of (e.g.) Antunes et al. [1] aims to infer an unknown, but fixed, degree distribution
of a large network via sampling within a finite population inference framework under which the entire network is
the population of interest. In contrast, the work of (e.g.) Britton [5] characterizes the limiting degree distribution
of a certain class of networks, where within a super population inference framework, the population of interest is
the population of degree distributions which describe the variability of node degrees under different realizations of
the network from a data-generating probability distribution. In this work, we will operate under a super population
inferential framework, aiming to characterize the statistical variability of empirical distributions of sequences of graph
statistics that would arise if we were able to replicate the network from some data-generating probability distribution.

Other related works include that of Bickel et al. [2] and Chan and Airoldi [7], both of which considered the
problem of fitting a class of statistical models which assume edge variables are conditionally independent using
empirical quantities related to graph statistics. The work of Bickel et al. [2] introduced a method of fitting a class of
statistical models which assume edge variables are conditionally independent using a method of moments utilizing
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empirical frequencies of graph statistics, and as part of this work established the asymptotic consistency of empirical
quantities for degree distributions within this class of models. The work of Chan and Airoldi [7] proposed a consistent
histogram estimator for graphons which is based on a sorting algorithm of the empirical degree distribution. Both
works are concerned with empirical quantities related to graph statistics, namely the degree distribution, but in the
context of an overall goal of developing methods for fitting statistical models to observed networks.

Related works on these topics have predominantly focused on studying the degree distributions of networks. In this
work, we develop theory which covers a broad range of sequences of graph statistics, including degree distributions
and edgewise shared partner distributions as examples. A key difference between this work and the cited related work
is that the theory developed in this work covers a broader class of random graphs by allowing edges within networks
to be dependent. The above cited works make strong assumptions on the dependence structure of the edge variables
in the network, either assuming that edges are independent or conditionally independent. In addition, the cited results
focus on asymptotic theory, whereas our main results are non-asymptotic and establish uniform rates of convergence.
To the best of our knowledge, these results represent the first results of their kind, covering both a broad scope of
distributions of sequences of graph statistics, as well as random graphs with dependent edge variables without strong
independence or conditional independence assumptions placed on the edge variables of random graphs.

2. Theoretical results

The main theoretical results are presented in Section 2.2. We study two applications of our theory, which are
the degree distribution and the edgewise shared partner distribution, in Sections 2.3 and 2.4, respectively. Before
presenting these results, we first outline the key assumption of this work, which is a weak dependence assumption,
and derive an exponential concentration inequality in Section 2.1 for the proofs of the main results. We discuss our
weak dependence assumption in further detail in Section 2.5, emphasizing the applicability to real world networks.

2.1. Exponential concentration inequalities for random graphs with dependent edges
We aim to study probabilities of the event ||F̂N(X) − FN ||∞ ≥ ε for ε > 0 in order to establish rates of convergence

for the empirical distributions of sequences of graph statistics. As discussed in Section 1, a key challenge in network
data applications lies in the fact that the networks of our world often possess dependent edges. We present an approach
to deriving concentration inequalities of quantities ||F̂N(X)− FN ||∞ for random graphs with dependent edges based on
martingale decompositions. Related approaches to developing concentration inequalities for functions of dependent
random variables with countable supports based on works by Chazottes et al. [9] and Kontorovich and Ramanan
[21] have been successfully applied in the statistical network analysis literature to establish concentration inequalities
in settings of random graphs with dependent edges [30, 33]. For this work, however, such approaches will not yield
suitable exponential bounds, and we therefore must derive a new concentration inequality in Theorem 1 for the explicit
purpose of establishing exponential bounds on the tail probabilities of events ||F̂N(X) − FN ||∞ ≥ ε for ε > 0. This
point is discussed in further detail in Section 2.5.

Before presenting our concentration inequality, we first outline some notational definitions and assumptions. We
define the vector of (dependent) Bernoulli random variables Bk = (Bk,1, . . . , Bk,M) (k ∈ {0, 1, . . . , p}) by

Bk,i B 1(Gk,i) ∈ {0, 1}, for all k ∈ {0, 1, . . . , p} and i ∈ {1, . . . ,M},

and the conditional probability distribution of Bk,i conditional on (Bk,1, . . . , Bk,i−1, Bk,i+1, . . . , Bk,M) to be

Pb
k,i(v) B P

(
Bk,i = v | Bk, j = b j, j ∈ {1, . . . ,M} \ {i}

)
, v ∈ {0, 1}, b ∈ {0, 1}M .

Next, in order to measure the influence of any Bk,m on any other Bk, j ( j ∈ {1, . . . ,M} \ {m}), we define

δk,m,i B max
(b,b′)∈{0,1}M×{0,1}M : bi=b′i , i,m

dTV

(
Pb

k,i, P
b′
k,i

)
, (4)

where dTV

(
Pb

k,i, P
b′
k,i

)
is the total variation distance between the probability distributions Pb

k,i and Pb′
k,i. We quantify the

total strength of influence within the random graph through the quantityDN B max{DN,0, DN,1, . . . ,DN,p}, where

DN,k B
1
M

M∑
m=1

1 +
∑

i∈{1,...,M}\{m}

δk,m,i

2

, k ∈ {0, 1, . . . , p}. (5)
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By construction, we have the lower boundDN ≥ 1. We will control the dependence in the random graph throughDN ,
where higher values will result in weaker concentration, as will be seen. Additionally, we present an application in
Section 4 for which DN will be bounded universally, i.e., for all network sizes N ∈ {3, 4, . . .}, and discuss our weak
dependence assumption in further detail in Section 2.5, with an emphasis on its applicability to real world networks.

Even in the case when edges in the random graph are independent, we cannot expect δk,m,i = 0 for i , m, as the
events Gk,i and Gk, j can still be dependent. A case in point are the degrees of nodes. Even if edges in the random graph
are assumed to be independent, the degree of node i ∈ N and j ∈ N \ {i} are dependent, as both depend on the value
of edge variable Xi, j. As a result, the collection of random variables Bk,1, . . . , Bk,M (for each k ∈ {0, 1, . . . , p}) will in
general be a collection of dependent random variables, even when edges in the random graph are independent. The
key assumption of this work, further discussed in Section 2.5, is that dependence, as measured byDN , should not be
overly strong. We now turn to presenting our concentration inequality.

Theorem 1. Consider a simple random graph X and let F̂N : X 7→ [0, 1]p+1 be as defined in (2). Then, for all t > 0,

P
(
||F̂N(X) − FN ||∞ ≥ t

)
≤ 2 exp

(
−

2Mt2

DN
+ log(1 + p)

)
,

whereDN is defined in (5).

We will leverage Theorem 1 to establish the statistical theory of this work. While there are other possibilities for
concentration inequalities, we note that the exponential inequality in Theorem 1 is most suitable for our purposes.
First, in the proofs of coming theoretical results, we will utilize union bounds which will render weaker concentration
inequalities (e.g., Chebyshev’s inequality) insufficient for our purposes. Second, there are two related concentration
inequalities due to Kontorovich and Ramanan [21] and Chazottes et al. [9], as well as concentration inequalities
utilizing the Dobrushin’s uniqueness condition [11, 12], However, these concentration inequalities will not lead to
suitable inequalities in this work, a point which is discussed in Section 2.5.

2.2. Non-asymptotic high probability bounds on the `∞-error of empirical distributions

We now turn to the problem of bounding the maximum absolute error ||F̂N(X)−FN ||∞ of the empirical distribution
F̂N(X) as an estimator of FN . Our main results, presented in Theorems 2 and 3, are then applied to specific examples,
the results of which are presented as corollaries in Sections 2.3 and 2.4.

Theorem 2 derives the first uniform bound on the error of empirical distributions of sequences of graph statistics
in settings where the edge variables can be dependent and covering a broad range of sequences of graph statistics. It is
worth noting that comparable results rely on strong independence or conditional independence assumptions about the
edge variables in networks, as discussed in Section 1.1, and as such do not apply to networks with dependent edges.
In contrast, Theorem 2 elaborates general conditions which establish the foundations for deriving uniform rates of
convergence and asymptotic consistency of empirical distributions of sequences of graph statistics.

Theorem 2. Consider a simple random graph X and let F̂N : X 7→ [0, 1]p+1 be as defined in (2). Then

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 −
2

max{M, 1 + p}2
,

whereDN is defined in (5).

The definition of DN in (5) in Theorem 2 places certain restrictions on the scope of what sequences of graph
statistics can be chosen, as the quantity DN cannot grow too quickly relative to M, otherwise consistency will not
be established. One potential challenge lies in the fact that the definition of DN in (5) assumes that we bound the
total variation distances of the conditional probabilities distributions in (4) and (5) with probability 1. It is possible to
establish a similar result as the one presented in Theorem 2 which weakens this assumption, allowing our results to
cover a larger scope of sequences of graph statistics and random graphs, which we present in Theorem 3.
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Theorem 3. Consider a simple random graph X and let F̂N : X 7→ [0, 1]p+1 be as defined in (2). Assume there exists
a subset X0 ⊆ X, a constant N0 ≥ 3, and a function r : {3, 4, . . .} 7→ (0, 1) such that

δk,m,i B max
(b,b′)∈Bk(X0)×Bk(X0) : bi=b′i , i,m

dTV

(
Pb

k,i, P
b′
k,i

)
, (6)

where Bk(X0) B {b ∈ {0, 1}M : Bk(x) = b for some x ∈ X0} (k ∈ {0, 1, . . . , p}),

r(N) ≤

√
DN log(max{M, 1 + p})

M
,

withDN defined as in (5) using the definition of δk,m,i in (6), and

P(X ∈ X0) ≥ 1 − r(N), for all N ≥ N0. (7)

Then

P
||F̂N(X) − FN ||∞ <

√
27
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 − r(N) −
4

max{M, 1 + p}2
.

Theorem 3 extends the results of Theorem 2 to settings where certain configurations of the network X ∈ X may
give rise to large total variation distances in the definition of δk,m,i, which in turn would give rise to larger values of
DN . A case in point is again given by the degree distribution. Consider the scenario where m = 1 and focus on the
conditional probability distribution of node 2 ∈ N given all other nodes j ∈ N \ {1, 2}, in which case

Bd,i B 1

 ∑
j∈N\{i}

Xi, j = d

 , i ∈ N, d ∈ {0, 1, . . . ,N − 1}.

Define (b, b′) ∈ {0, 1}N × {0, 1}N as follows:

1. Set b′j = b j for all j ∈ N \ {1} for any value b j ∈ {0, 1}, and
2. Define b1 = 0 and b′1 = 1.

In this case,

dTV(Pb
0,2, P

b′
0,2) =

1
2

1∑
d=0

∣∣∣Pb
0,2(d) − Pb′

0,2(d)
∣∣∣ = 1,

because Pb
0,2(0) = 1 and Pb′

0,2(1) = 1, owing the construction of the (b, b′) above. In words, this occurs because if
nodes 1, 3, . . . ,N all have degree 0, which is the event

B0,i = 1

 ∑
j∈N\{i}

Xi, j = 0

 = 0, i ∈ {1, 3, . . . ,N},

then node 2 must have degree equal to 0; and conversely, if node 1 has degree greater than 0, i.e.,

B0,1 = 1

 ∑
j∈N\{i}

Xi, j = 0

 = 0,

and nodes 3, . . . ,N all have degree 0, then node 2 cannot have have degree equal to 0, because there must be some
node connected to node 1 if B0,1 = 0. However, the case where a single network has only a single edge will be an
unlikely event for most models and applications of interest. This is where Theorem 3 innovates upon Theorem 2.
Under the setup of Theorem 3, we can circumvent pathological cases such as the example above which occur with
low probability by restricting the definition of δk,m,i to only subsets X0 ⊂ X which occur with high probability and
for which the total variation distances defining δk,m,i are not too large to render the results of our statistical theory
meaningless. This allows our results to extend to a much greater scope of networks and sequences of graph statistics.
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2.3. Applications to degree distributions
We next prove a corollary to Theorem 3 for the empirical degree distribution, which was given as an example in

Section 1 and is defined in (3). The degree distribution is one of the most fundamental aspects of a network, and the
importance of this result lies in the fact that often practitioners of statistical network science rely on information and
insights gained through the empirical degree distributions. Corollary 1 provides rigorous statistical foundations for
elaborating the first statistical disclaimers to drawing inferences from empirical degree distributions of networks, in a
broad range of settings that notably cover networks with dependent edge variables.

It is worth noting that while Corollary 1 is stated for degree distributions of undirected random graphs, it is
straightforward to extend the results to directed random graphs, covering either total degree distributions, as well as
out-degree and in-degree distributions. We do not present this extension, but note that we appeal to this result in our
application to a directed network in Section 4.

To lay the foundation for Corollary 1, we will let M = N and sd(x) (d ∈ {0, 1, . . . ,N − 1}) be as defined in (3) and
define Bd B (Bd,1, . . . , Bd,N) (d ∈ {0, 1, . . . ,N − 1}) by defining

Bd,i B 1

 ∑
j∈N\{i}

Xi, j = d

 , for all i ∈ N and d ∈ {0, 1, . . . ,N − 1}.

Assume that there exist a subset X0 ⊆ X and constant N0 ≥ 3 with the property that

P(X ∈ X0) ≥ 1 −
2

N2 , for all N ≥ N0, (8)

and such that, for each node m ∈ N, there exist Mm ⊂ N and constants αm,i ∈ [0,∞) (i ∈ N \ (Mm ∪ {m}) such that

max
(b,b′)∈Bd(X0)×Bd(X0) : bi=b′i , i,m

dTV

(
Pb

d,i, P
b′
d,i

)
≤ αm,i, for all i ∈ N \ (Mm ∪ {m}), (9)

for each d ∈ {0, 1, . . . ,N − 1}, recalling the definition

Bd(X0) B
{
b ∈ {0, 1}N : Bd(x) = b for some x ∈ X0

}
, d ∈ {0, 1, . . . ,N − 1}.

As a result of this assumption, for each m ∈ N and d ∈ {0, 1, . . . ,N − 1},

1 +
∑

i∈N\{m}

δd,m,i ≤ 1 + Mm +
∑

i∈N\(Mm ∪ {m})

αm,i,

defining Mm B |Mm| (m ∈ N) and noting that dTV

(
Pb

k,i, P
b′
k,i

)
≤ 1, which in turn implies that

DN B max
d∈{0,1,...,N−1}

 1
M

M∑
m=1

1 +
∑

i∈{1,...,M}\{m}

δd,m,i

2 ≤ (1 + Mmax + αmax)2, (10)

defining Mmax B {M1, . . . ,MN} and αmax = maxm∈N
∑

i∈N\(Mm ∪ {m}) αm,i.
The assumption of both (8) and (9), which leads to the bound onDN given in (10), is comparable to strong mixing

conditions (i.e., it is reminiscent of the α-mixing condition) [4], placed under a high-probability condition. Bounding
DN becomes straightforward under independence assumptions placed on the degrees of nodes, but as mentioned
already, this assumption would be unreasonable because degrees are not independent. A more realistic assumption
would be a form of M-dependence similar to the local dependence assumption of local dependence random graph
models [28, 30], which we utilize in the application presented in Section 4. However, even this assumption may be
too strong for certain applications. The conditions outlined in (8) and (9), which lead to the bound given in (10),
represent a compromise between rich local dependence and weak global dependence, by incorporating a form of
strong local dependence (controlled via Mmax) and weak global dependence reminiscent of strong mixing conditions
(controlled via αmax). In practical terms, this assumption allows arbitrarily strong influence of the degree of a node
m ∈ N on other nodes j ∈ N \ (Mm ∪ {m}), but permits only weak influence of the degrees of nodes i ∈Mm.
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Corollary 1. Under the assumptions of Theorem 3 with sk(x) given by (3) and the assumption of both (8) and (9),
there exists a constant N0 ≥ 3 such that

P
||F̂N(X) − FN ||∞ < (1 + Mmax + αmax)

√
3
2

√
log(N)

N

 ≥ 1 −
6

N2 , for all N ≥ N0.

Assuming Mmax + αmax = o
(√

log(N)/N
)
, the error ||F̂N(X) − FN ||∞ converges almost surely to 0 as N → ∞.

Corollary 1 demonstrates uniform convergence of the empirical degree distribution as N → ∞, under the sole
condition that the dependence among the degrees not be overly strong globally, in the sense that we require the
quantities Mmax and αmax to satisfy Mmax + αmax = o

(√
log(N)/N

)
. Of note, neither the sparsity of the random graph

nor the heterogeneity of node degrees affect our consistency theory. This means that a network can demonstrate
marked heterogeneity among the node degrees and the empirical degree distribution F̂N(X) will be asymptotically
stable in the sense that it convergences uniformly to FN , again provided the weak dependence criterion elaborated in
the corollary is satisfied.

2.4. Applications to edgewise shared partner distributions

The study of transitivity and dependence in network data applications dates back to at least Holland and Leinhardt
[16], and modeling expressions of network transitivity through triangle counts was a key motivation in the seminal
work of Frank and Strauss [14], and has been a focus in the exponential-family random graph model literature [24].
In general, we can understand the network phenomena of transitivity within a statistical context as the change in the
conditional probability of an edge due to the presence or absence of common connections to other nodes. Colloquially,
this may be described in the context of social network analysis as the friend of my friend is my friend, where it is
common to observe positive transitivity, meaning two nodes are more likely to be connected if they have a common
connection to at least one other node in the network, compared with the case when they have no other connections.
A more modern model of network transitivity is given by curved exponential family parameterizations of edgewise
shared partner distributions [20, 26]. Additionally, the edgewise shared partner distribution is frequently included in
goodness-of-fit diagnostics for evaluating the fit of estimated models [19]. Notably, the R package ergm includes the
edgewise shared partner distribution as a default in its goodness-of-fit diagnostics [23]. See Stewart et al. [32] for an
in-depth analysis and discussion of transitivity in the context of social network analysis, as well for a review of the
edgewise shared partner distribution and relevant models.

We can write down the edgewise shared partner distribution of a network by defining s(x) in (1) to be

sk(x) =
∑
{i, j}⊂N

xi, j 1

 ∑
h∈N\{i, j}

xi,h x j,h = k

 , k ∈ {0, 1, . . . ,N − 2}. (11)

In words, each summand (for a given k ∈ {0, 1, . . . ,N − 2}) in (11) is an indicator random variable indicating whether

1. The edge xi, j between nodes i ∈ N and j ∈ N is present in the network x, and
2. Nodes i ∈ N and j ∈ N each have precisely k ∈ {0, 1, . . . ,N − 2} connections to common nodes h ∈ N \ {i, j},

which are called the shared partners due to the fact that nodes i ∈ N and j ∈ N share common connections to
these k ∈ {0, 1, . . . ,N − 2} nodes h ∈ N \ {i, j}.

We then define F̂N(X) in (2) to be

F̂N,k(X) =
sk(X)
||X||1

, k ∈ {0, 1, . . . ,N − 2}, (12)

where ||X||1 =
∑
{i, j}⊂N Xi, j is the edge count of the network X, noting that the sum in (11) is essentially a sum of ||X||1

terms. Distinct from the previous example which was the degree distribution, the value of M (which in this example
will be ||X||1) is not a deterministic constant, but is in fact a random quantity. In order to overcome this, we will utilize
Theorem 3 and incorporate into the high-probability set X0 a condition which allows us to bound ||X||1, effectively
bounding M in the worst case.
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We control the quantity DN in similar fashion to Corollary 1. Let E B
{
{i, j} : (i, j) ∈ N × N with i < j

}
be the

set of all unordered pairs of nodes in the network X. Define a bijective map ξ : {1, . . . ,
(

N
2

)
} 7→ E, which essentially

constructs an arbitrary ordering of the pairs of edges which are enumerated in E, and define Bk B (Bk,1, . . . , Bk,M)
(k ∈ {0, 1, . . . ,N − 2}) by defining, for each q ∈ {1, . . . ,

(
N
2

)
} with {i, j} = ξ(q),

Bk,q B 1

 ∑
h∈N\{i, j}

Xi,h x j,h = k

 , for all k ∈ {0, 1, . . . ,N − 2}.

In words, for each q ∈ {1, . . . ,
(

N
2

)
} with {i, j} = ξ(q), Bk,q = 1 if and only if nodes i and j have precisely k shared

partners. Assume that there exist a subset X0 ⊆ X and constant N0 ≥ 1 with the property that

P(X ∈ X0) ≥ 1 −
2

N2 , for all N ≥ N0, (13)

and such that, for each m ∈ {1, . . . ,
(

N
2

)
}, there exist a subset Mm ⊂ {1, . . . ,

(
N
2

)
} and constants αm,q ∈ [0,∞) for each

q ∈ {1, . . . ,
(

N
2

)
} \ (Mm ∪ {m}) such that

max
(b,b′)∈Bk(X0)×Bk(X0)

dTV

(
Pb

k,q, P
b′
k,q

)
≤ αm,q, for all m ∈

{
1, . . . ,

(
N
2

)}
, q ∈

{
1, . . . ,

(
N
2

)}
\ (Mm ∪ {m}), (14)

for each k ∈ {0, 1, . . . ,N − 2}, recalling the definition

Bk(X0) B
{
b ∈ {0, 1}(

N
2) : Bk(x) = b for some x ∈ X0

}
, k ∈ {0, 1, . . . ,N − 2}.

As a result of this assumption, for each m ∈ {1, . . . ,
(

N
2

)
} and k ∈ {0, 1, . . . ,N − 2},

1 +
∑

q∈{1,...,(N
2)}\{m}

δk,m,q ≤ 1 + Mm +
∑

q∈{1,...,(N
2)}\(Mm ∪ {m})

αm,q,

defining Mm B |Mm| (m ∈ N) and noting that dTV

(
Pb

k,q, P
b′
k,q

)
≤ 1, which in turn implies that

DN B max
k∈{0,1,...,N−2}

 1
M

M∑
m=1

1 +
∑

q∈{1,...,(N
2)}\{m}

δk,m,q


2 ≤ (1 + Mmax + αmax)2, (15)

defining Mmax B {M1, . . . ,M(N
2)} and

αmax B max
m∈{1,...,(N

2)}

∑
q∈{1,...,(N

2)}\(Mm ∪ {m})

αm,q,

as before in case of the degree distribution.

Corollary 2. Under the assumptions of Theorem 3 with sk(x) as given in (11) and assuming both (13) and (14) and

P
(
X ∈

{
x ∈ X : ||x||1 ≥ Nβ

}
∩ X0

)
≥ 1 −

2
N2 , (16)

for some β > 0 and X0 given by (13) and (14), there exists a constant N0 ≥ 3 such that

P
||F̂N(X) − FN ||∞ < (1 + Mmax + αmax)

√
3
2

√
log(N)

Nβ

 ≥ 1 −
11
N2 , for all N ≥ N0.

Assuming Mmax + αmax = o
(√

log(N)/Nβ
)
, the error ||F̂N(X) − FN ||∞ converges almost surely to 0 as N → ∞.
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2.5. Discussion of the weak dependence condition

The main assumption of this work lies in the reasonableness of the assumption thatDN will be bounded or grow
slowly, relative to the quantity M in our theory. We argue that this assumption will be reasonable in many applications,
especially those in the social and life sciences, by first reviewing a related assumption for deriving concentration
inequalities, and then providing a discussion of why our condition may be expected to be satisfied in many real world
applications.

The main assumption of our work is reminiscent of the approach to concentration via the Dobrushin’s uniqueness
condition [12], a useful review of which is given in Dagan et al. [11]. In our notation, we can restate a concentration
inequality (Theorem 5 of Dagan et al. [11]) under Dobrushin’s condition as follows:

P
(∣∣∣∣F̂N,k(X) − FN,k

∣∣∣∣ ≥ ε) ≤ 2 exp
− (1 − αk) ε2

2 ||λk ||
2
2

 , k ∈ {0, 1, . . . , p}, (17)

where
αk B max

m∈{1,...,M}

∑
i∈{1,...,M}\{m}

δk,m,i, k ∈ {0, 1, . . . , p}. (18)

and λk B (λk,1, . . . , λk,M) (k ∈ {0, 1, . . . , p}) are such that∣∣∣∣∣∣∣ 1
M

M∑
i=1

bk,i −
1
M

M∑
i=1

b′k,i

∣∣∣∣∣∣∣ ≤
M∑

i=1

λk,i 1(bk,i , b′k,i), for all (bk, b′k) ∈ Bk × Bk, (19)

where Bk B
{
b ∈ {0, 1}M : Bk(x) = b for some x ∈ X

}
.

The concentration inequality we derive in Theorem 1 has three key advantages over the one in (17):

1. To utilize the concentration inequality in (17), each of the αk (k ∈ {0, 1, . . . , p}) must satisfy αk ∈ [0, 1) for
the concentration inequality to be meaningful. In practice, this may be hard to verify. The concentration
inequality of Theorem 1 does not have this requirement, and instead incorporates the analogous terms to the αk

(k ∈ {0, 1, . . . , p}) in the denominator term in exponential function and is therefore applicable in all scenarios,
notably relating higher values to weaker concentration inequalities.

2. The concentration inequality in (17), and related concentration inequalities in works by Chazottes et al. [9]
and Kontorovich and Ramanan [21], incorporate sensitivity conditions on changes to the functions, given by
or similar to (19), into exponential bounds. Such conditions assume that the functions being concentrated
are Lipschitz with respect to the Hamming metric, allowing for both global coefficients [21] or local variations
[9, 11]. In contrast, the concentration inequality of Theorem 1 leverages properties of the empirical distributions
functions F̂N,k(X) (k ∈ {0, 1, . . . , p}) in order to obtain a bound which does not have this requirement. In
practice, for a general scope of sequences of graph statistics, it could be challenging to quantify precisely how
the occurrence of one event would necessarily imply the occurrence or absence of another event, making it
difficult to utilize the referenced concentration inequalities. This challenge in eliminated in our approach to
developing the concentration inequality in Theorem 1.

3. Lastly, comparing our quantification of dependenceDN to that of αk (k ∈ {0, 1, . . . , p}), we observe thatDN is
defined as an average of the m ∈ {1, . . . ,M} summations recalled to be

1 +
∑

i∈{1,...,M}\{m}

δk,m,i, m ∈ {1, . . . ,M}, (20)

whereas αk looks at the maximal summation over the m ∈ {1, . . . ,M} analogous summations in definition of
(18). This allows our concentration inequality in Theorem 1 to handle cases when a small number of the M
summations in (20) are large (relative to the number of summations M), provided the average dependence across
these M summations in (20) is not overly strong as to render the results of our theory meaningless.
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We end the section with a discussion concerning when we can expect our assumptions to be met in real world
applications. For the sake of argument, consider a social network in the form of a friendship network and consider
two randomly selected individuals on two different continents. We might ask the question: If person A makes a new
friend, how can we expect that to influence the friendships of person B? In most sociological settings, is reasonable to
assume that individuals are able to influence only their local neighborhood, giving rise to potentially strong local de-
pendence, but weak global dependence. This exactly mirrors the construction of the bound onDN that was presented
in Corollaries 1 and 2, where we allowed for a small (relative to the size of the network) neighborhood of arbitrarily
strong dependence, but placed a weak dependence assumption on the quantities outside of that neighborhood. These
were controlled by the values of Mmax and αmax in Corollaries 1 and 2. Recent works in the statistical network analysis
literature have demonstrated the importance of localized dependence in network data applications on both statistical
grounds and scientific grounds [28, 30, 32, 33]. These works were inspired by the relevance of this type of assumption
to real world network data applications. As such, we argue that the weak dependence assumptions of this work are
highly applicable to real world networks. As a final remark concerning this topic, we note that in Theorem 2, the
quantity DN involves maximums taken over the entire sample space. The theory we develop in Theorem 3 allows
us to restrict consideration to only subsets of the sample space which occur with high probability. This allows us to
remove from consideration configurations of the network which may give rise to large values ofDN , but are unlikely
to be encountered in practice. As a result, our theory and results place weak restrictions on the dependence within the
random graph and the sequences of graph statistics.

3. Empirical results

We conduct a number of simulation studies to demonstrate the empirical performance of our theoretical results.

3.1. Simulation study 1: curved exponential-family random graph models

The first simulation study we conduct explores curved exponential parameterizations of exponential-family ran-
dom graph models. Curved exponential parameterizations for exponential-family random graph models date back to
Snijders et al. [31] and Hunter [18], and have since been shown to remediate issues with early attempts at constructing
models of edge dependent (e.g., model degeneracy) [20, 30, 32]. The most prominent example of curved exponential
parameterizations in the literature includes geometrically-weighted model terms, which parsimoniously parameterize
sequences of graph statistics, typically edge-wise shared partner distributions or degree distributions.

In this simulation study, we demonstrate the results of Theorems 2 and 3 in the context of a curved exponential-
family random graph model which includes two model terms: the edge count statistic and the geometrically-weighted
edgewise shared partner statistics. We can write down the joint distribution for X in this simulation study as

P(X = x) ∝ exp

θ1

∑
{i, j}⊂N

xi, j +

N−2∑
k=1

ηk(θ2, θ3)
∑
{i, j}⊂N

xi, j 1

 ∑
h∈N\{i, j}

xi,h x j,h = k


 , (21)

where (θ1, θ2, θ3) ∈ R × R × [0,∞) and

ηk(θ2, θ3) B θ2 exp(θ3)
[
1 − (1 − exp(θ3))k

]
, k ∈ {1, . . . ,N − 2}.

Further background on geometrically-weighted model terms can be found in Stewart et al. [32]. An important feature
of (21) lies in the fact that edges are dependent, owing to the fact that including edgewise shared partner statistics as
sufficient statistics in the exponential family implies that the joint distribution will not factorize with respect to the
edge variables. Moreover, the model will adjust the probability of different configurations of the network based on
these terms and the values and signs of the parameters (θ1, θ2, θ3) ∈ R × R × [0,∞), and as such is able to model the
expression of transitivity in a network as measured by the edgewise shared partner statistics.

For this simulation study, we focus on three different sequences of graph statistics and study the variability of
the empirical distributions for those sequences. These distributions include the degree distribution and edgewise
shared partner distribution, which were studied in Corollaries 1 and 2, respectively, as well as the geodesic distance
distribution. The latter is defined based on a sequence of graph statistics s1(x), . . . , sN−1(x), where sk(x) is the number
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Fig. 2: Results of simulation study 1. Estimated theoretical marginal distributions FN for the degree distribution, edgewise shared partner
distribution, and geodesic distance distribution of networks of size N ∈ {25, 50, 75, 100}.

of pairs of nodes with shortest path length equal to k in the network. All three sequences of graph statistics are default
diagnostic statistics in the goodness-of-fit method in the R package ergm, based on the work of Hunter et al. [19].

Simulation study 1 is conducted under the following conditions:

1. The parameter vector is set to (θ1, θ2, θ3) = (−3, .4, .75).
2. The number of nodes varies from N ∈ {25, 50, 75, 100}.
3. Networks X are simulated using Markov-Chain Monte Carlo approaches [see, e.g., 20] in order to provide

accurate approximations of FN and to generate network data sets for the simulation study.
4. For each case of N ∈ {25, 50, 75, 100}, we generate 500 replications and compute the empirical degree distribu-

tion F̂N(X) and the error ||F̂N(X) − FN ||∞ using the approximation of FN outlined above.

The results of Simulation study 1 are summarized in Figs. 2 and 3. We highlight two key elements of these results.
First, the theoretical marginal distributions FN for each of the sequences of graph statistics considered in this simu-
lation study are not constant in the network size N, as demonstrated by Fig. 2. Each marginal distribution FN for
N ∈ {25, 50, 75, 100} was approximated using 2500 sampled networks using the approach described above and to a
maximum estimated standard error of under .01 and a total sum of estimated standard errors under .01 as well, for
each F̂N,k(X) at each N ∈ {25, 50, 75, 100}. Second, the results of Fig. 3 demonstrate that the error ||F̂N(X) − FN ||∞

appropriately decays with high probability as a function of the network size N, suggesting the theoretical results of
this work may be realized even in settings where networks are only modestly size, noting that N ≤ 100 in this study.

3.2. Simulation study 2: sparse and dense β-models

The second simulation study we conduct focuses on the β-model [8], which is related to the p1-model of Holland
and Leinhardt [17], and posits a simple statistical model for degree heterogeneity in undirected random graphs. We
will explore the β-model in the context of this work in both the dense and sparse graph regimes, where notably sparse
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Fig. 3: Results of simulation study 1. Boxplots summarizing the error ||F̂N (X) − FN ||∞ of of the degree distribution, edgewise shared partner
distribution, and geodesic distance distribution of networks of size N ∈ {25, 50, 75, 100} based on 500 replications.

variations of the β-model have garnered recent attention [e.g, 10, 33]. The β-model may be written down as follows:

P(X = x) =
∏
{i, j}⊂N

P(Xi, j = xi, j), (22)

where

log
P(Xi, j = 1)
P(Xi, j = 0)

= θi + θ j, (θi, θ j) ∈ R2, {i, j} ⊂ N. (23)

The β-model has a straightforward interpretation. The log-odds of an edge in the network is equal to the sum θi + θ j,
where each node i ∈ N is endowed with a parameters θi ∈ R. These parameters are interpreted as sociality parameters,
where nodes i ∈ N with larger θi ∈ R will have on average a larger node degree when compared with other nodes j ∈ N
for which θ j < θi. As a result, the expected degrees of nodes under the β-model may exhibit significant heterogeneity.

Simulation study 2 is conducted under the following conditions:

1. The parameters in the vector θ ∈ RN are independently simulated according to a normal distribution where
θi ∼ N(−α log N, 1) for all i ∈ N and varying α ∈ {0, .25}.

2. The forms of (22) and (23) make it straightforward to simulate networks for approximating FN and simulating
replicates in each simulation.

3. For each case of N ∈ {10, 25, 50, 75, 100} and α ∈ {0, .25}, we generate 500 replications and compute the
empirical degree distribution F̂N(X) and the error ||F̂N(X) − FN ||∞ using the approximation of FN .

The value of α can be interpreted under the β-model as follows:

P(Xi, j = 1) ∝ exp
(
(θi + θ j − 2α log(N))

)
=

exp
(
(θi + θ j)

)
N2α ,

which implies that the expected degrees of nodes will grow slower than O(N) when α > 0 as

max
i∈N

E
∑

j∈N\{i}

Xi, j ≤ exp (2 ||θ||∞) N1−2α. (24)
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Fig. 4: Results of simulation study 2. Boxplots summarizing the error ||F̂N (X) − FN ||∞ of of the degree distribution, edgewise shared partner
distribution, and geodesic distance distribution of networks of size N ∈ {10, 25, 50, 75, 100} based on 500 replications.

As a result, for α = 0, our simulation study is conducted in the dense graph regime where the expected number of
edges in the network grows at a rate of O(N2), whereas for α = .25, the upper bound in (24) demonstrates the expected
degrees of nodes will satisfy o(N), implying the expected number of edges in the network will be o(N2).

The results of simulation study 2 are summarized in Fig. 4. This simulation study highlights a key point that
the theoretical results of this work are not affected by significant heterogeneity in node behavior, namely the node
degrees. Theorems 2 and 3 reveal that the main factor which influence to the error ||F̂N(X) − FN ||∞ is the dependence
among the events of interest as measured byDN . Notably here, the β-model assumes that edges are independent, and
the results presented in Fig. 4 show that the error ||F̂N(X) − FN ||∞ decays with the size of the network. The value of
α appears to only influence the error associated with the empirical distributions of the edgewise shared partner and
geodesic distance distributions, given by the differences in the rates of decay between the first column and second
column in Fig. 4, with the case of α = 0 presenting a faster decaying error ||F̂N(X) − FN ||∞ with the network size N.

4. Application

We conclude with an application to a school classes network data set studied by Stewart et al. [32]. The network
data is a friendship network which consists of N = 6594 third grade students which are uniquely associated to one
of 304 classes within 176 schools. The network is directed as the data collection mechanism was a name generator
which was “Name people from your class that you would most like to play with,” as well as information on the sex of
students (recorded as male or female). A visualization of part of the network is given in Fig. 5. For full details of the
data set, we refer readers to Stewart et al. [32].
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Fig. 5: A visualization of 44 of the 304 school classroom friendship networks in the school classes data set.

The sampling mechanism for this data set includes only within-class edges, which can be seen from the visualiza-
tion of the network presented in Fig. 5. Due to the nature of the sampling design and the structure of the network, it
is natural to assume a local dependence structure of the network [28, 30], which was the approach taken in previous
work studying this data set [32]. Local dependence random graphs can be thought of as generalizations of stochastic
block models [15], where the set of nodes N is partitioned into blocks or subpopulations A1, . . . ,AK (K ≥ 2). The
term local dependence is due to the fact that joint distributions for local dependence random graphs are assumed to
factorize with respect to the block-based subgraphs:

P(X = x) =
∏

1≤k≤l≤K

Pk,l(Xk,l = xk,l), (25)

where Xk,l is the vector of edge variables between nodes in block Ak and Al and Pk,l is the marginal probability
distribution of the subgraph Xk,l. As the form of (25) suggests, edge variables within the same block-based subgraph
Xk,l (1 ≤ k ≤ l ≤ K) are allowed to be dependent, but edges in different block-based subgraphs are assumed to be
independent, hence the name of local dependence random graphs. Of interest to this work lies in the property that
whenever the events of interest in (1) are defined around the block-based subgraphs, local dependence random graphs
will ensure that the main assumption of this work—the weak dependence assumption outlined in Section 2.1 and
discussed in Section 2.5—will be satisfied. As an example, consider the within-block out-degree of nodes:

deg+
i (x) B

∑
j∈Azi \{i}

xi, j, i ∈ N, (26)

where zi ∈ {1, . . . ,K} denotes the community membership of node i ∈ N, i.e., zi = k implies i ∈ Ak. By the
local dependence property, two within-block out-degree statistics deg+

i (X) and deg+
j (X) will be independent whenever

zi , z j, as each will be a function of non-overlapping subsets of edge variables in the network X, each of which are
independent of the other. As a result, it is straightforward to demonstrate in this case that

DN ≤ max{|A1|, . . . , |AK |}.

In other words, as long as the sizes of the blocks are bounded above or do not grow too quickly with the network size
N, Theorems 2 and 3 will establish consistency for empirical distributions of sequences of graph statistics defined
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Fig. 6: Boxplots summarizing the error ||F̂N (X)− FN ||∞ of of the empirical out-degree distribution based on random samples without replacement
of size K ∈ {1, 5, 25, 50, 100, 200} of the 304 school classroom networks in the school classes data set.

around block-based subgraphs, notably including degree statistics edgewise shared partner statistics of within-block
quantities, by an extension of Corollaries 1 and 2. In this application, we would take Mmax = max{|A1|, . . . , |AK |} and
αmax = 0, in order to compare with the results of Corollaries 1 and 2.

The data we are studying includes only information on the within-block subgraphs Xk,k (k ∈ {1, . . . ,K}). It is
useful here that the form of (25) also establishes two useful properties for our purposes here:

1. First, by the independence of the block-based subgraphs Xk,l (1 ≤ k ≤ l ≤ K), the marginal distribution of the
within-block subgraphs Xk,k (k ∈ {1, . . . ,K}) will have a convenient form:

P((X1,1, . . . , XK,K) = (x1,1, . . . , xK,K)) =

K∏
k=1

P(Xk,k = xk,k),

which allows us to be able to focus on the within-block subgraphs independently of the unobserved between-
block subgraphs.

2. Second, local dependence random graphs satisfy a weak form of projectivity based on around the block-based
subgraphs [30], which facilitates exploration of rates of convergence in a real-world data set as the collection
of within-block subgraphs X1,1, . . . , XK,K are independent. In other words, we are able to subsample the block-
based subgraphs by exploiting the independence, which facilitates an exploration of rates of convergence by
utilizing this specific sampling mechanism.

One unique challenge that this data set holds is that there is a substantial amount of missing data. The response
rate to the questionnaire was highly variable across the school classes, where the median response rate of students was
87%, with 44 classes with responses rates of 100% [32]. For every student which responded to the questionnaire, the
out-edges of that student are observed, which means that we observe the within-class out-degrees as defined in (26)
for each respondent to the survey. As a result, we can define the empirical within-class out-degree distribution based
on the subset of students responding to the questionnaire, circumventing the issue of missing data.

We visualize the error ||F̂N(X) − FN ||∞ based on subsampling without replacement individual class networks in
Fig. 6, with the number of classes being sampled in each iteration of subsampling ranging from 1 class up to 200
classes. As this is a real-data application, the true distribution is unknown. However, for local dependence random
graph models, the quantity DN is bounded above by the size of the largest block size (here 33), as discussed above.
Hence, the results of Corollary 1 can establish the consistency of the empirical within-class out-degree distribution.
Since the number of nodes in this application is N = 6594, we treat the empirical out-degree distribution based on
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Fig. 7: Boxplots demonstrating the variability of the empirical out-degree distribution F̂N (X) based on random samples without replacement of
size 1, 5, and 25 of the within-block subgraphs Xk,k (1 ≤ k ≤ 304) based on the 304 school classroom networks in the school classes data set.

the entire network as an accurate approximation of FN for the purposes of this study and explore changes in the error
||F̂N(X) − FN ||∞ when F̂N(X) is based on a subsample of the classes in the entire network, the results of which are
visualized in Fig. 6. Notably, by the time even just 25 or 50 classes are subsampled, the empirical within-class out-
degree distribution is relatively stable, showing low variability. We further explore the variability of the within-class
out-degree distributions of this network in Fig. 7, which visualizes the variability of at each degree in the out-degree
distribution across different amounts of subsampling. From these two plots, we can see that the empirical out-degree
distribution becomes relatively stable past when 25 school classes are subsampled.

5. Conclusions

This work has established the first statistical disclaimers which help to provide sufficient conditions under which
one can expect empirical distributions of sequences of graph statistics to be uniformly consistent, by establishing
non-asymptotic bounds on the error ||F̂N(X) − FN ||∞ which hold with high probability. Our results notably cover
many statistics and charts used in network science applications which aim to study networks across a large variety of
different domains and fields of study, emphasizing the importance of the development of statistical foundations that
help us understand the properties of these statistics and charts. Moreover, we have demonstrated via mathematical
applications that the probability threshold of our main results is sufficient to establish strong consistency of empirical
distributions, in the sense that ||F̂N(X) − FN ||∞ converges almost surely to 0 as the network size N → ∞ in many
applications of interest. In particular, the theory we developed in this work covers a broad class of random graphs
which allow edges to be dependent, making our results widely applicable to many applications.

The key to our approach lies in elaborating a weak dependence condition which facilitates the derivation of expo-
nential inequalities for the tails of distributions of sequences of graph statistics. We expect that the weak dependence
assumption would be satisfied in many applications. One case in point includes the local dependence random graphs
[28, 30], which was utilized in our application to the school classes network data set in Section 4. In this class of mod-
els, it is possible to demonstrate thatDN is bounded above provided the sizes of the local dependence neighborhoods
are bounded above. An intuitive description of this assumption is provided in Section 2.5, where we argued that, in
the context of sociological applications, it is reasonable to assume that individuals are able to strongly influence only
their local neighborhood, giving rise to potentially strong local dependence, but weak global dependence. As demon-
strated through Corollaries 1 and 2, edge variables and events of interest defining the sequences of graph statistics

17



may be strongly dependent on a local level (i.e., small subsets), but should not depend too strongly on a global level.
To reiterate, we argue that such an assumption would be expected to be satisfied in many social networks (as well as
domains beyond social network analysis), where individuals or relationships may have a strong local influence in the
position of the network, but are unlikely to exert a strong global influence on the structure of the network.

Lastly, our simulation studies and application verify that the general theory we have developed in this work may
be realized in settings of networks which are modestly sized, as well as networks for which there may be strong
triadic dependence and significant node heterogeneity. Interestingly, our theoretical results are independent of certain
complexities of models or probability distributions, essentially only requiring that a weak dependence assumption is
satisfied. Combined, the empirical and theoretical results of this work help to provide a first comprehensive analysis
of the conditions under which inferences drawn from empirical distributions of sequences of graph statistics may be
expected to be consistent and informative for networks with dependent edges.
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Appendix: Proofs of theoretical results

Proof of Theorem 1: Our method of deriving concentration inequalities in this work is based on martingale decom-
positions. Following the definition of F̂N given in (2), we may write down the following for each k ∈ {0, 1, . . . , p}:

F̂N,k(X) − FN,k =

M∑
m=1

(
E

[
F̂N,k(X) |Fk,m

]
− E

[
F̂N,k(X) |Fk,m−1

])
,

where Fk,m B σ
(
1(Gk,1), . . . ,1(Gk,m)

)
(m ∈ {1, . . . ,M}) is the filtration of the process based on the Bernoulli random

variables defined in (1), i.e., Fm,k is the σ-field generated by the Bernoulli random variables 1(Gk,1), . . . ,1(Gk,m) for
each k ∈ {0, 1, . . . , p} and m ∈ {1, . . . ,M}. Applying the Azuma-Hoeffding inequality (e.g., Corollary 2.20, [34]),

P
(∣∣∣∣F̂N,k(X) − FN,k

∣∣∣∣ ≥ t
)
≤ 2 exp

− 2 t2

||∆k ||
2
2

 , for all t > 0, k ∈ {0, 1, . . . , p}, (27)

defining ∆k B (∆k,1, . . . ,∆k,M) (k ∈ {0, 1, . . . , p}) with the definition, for each m ∈ {1, . . . ,M},

∆k,m B inf
{
a ∈ [0,∞) :

∣∣∣∣E [
F̂N,k(X) |Fk,m

]
− E

[
F̂N,k(X) |Fk,m−1

]∣∣∣∣ ≤ a holds P-a.s
}
.

In the case where ||∆k ||2 = 0, we have the trivial bound of

P
(∣∣∣∣F̂N,k(X) − FN,k

∣∣∣∣ ≥ t
)

= 0, for all t > 0.

As a result, we proceed without loss under the assumption that ||∆k ||2 > 0 (k ∈ {0, 1, . . . , p}). By (1) and (2),

E
[
F̂N,k(X) |Fk,m

]
− E

[
F̂N,k(X) |Fk,m−1

]
=

1
M

M∑
i=m

(
E

[
1(Gk,i) |Fk,m

]
− E

[
1(Gk,i) |Fk,m−1

] )
, (28)

noting that E
[
1(Gk,i) |Fk,m

]
= 1(Gk,i) = E

[
1(Gk,i) |Fm−1,k

]
(P-a.s.) for all i < m. We next bound∣∣∣E [

1(Gk,i) |Fk,m
]
− E

[
1(Gk,i) |Fk,m−1

]∣∣∣ ≤ sup
(a,b)∈{0,1}×{0,1}

∣∣∣∣E [
1(Gk,i) | F̃

(a)
k,m

]
− E

[
1(Gk,i) | F̃

(b)
k,m

]∣∣∣∣
=

∣∣∣∣E [
1(Gk,i) | F̃

(0)
k,m

]
− E

[
1(Gk,i) | F̃

(1)
k,m

]∣∣∣∣ , (29)
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defining F̃
(ζ)
k,m B σ

(
1(Gk,1), . . . ,1(Gk,m−1), ζ

)
for ζ ∈ {0, 1}, m ∈ {1, . . . ,M}, and k ∈ {0, 1, . . . , p}. In words, F̃(ζ)

k,m is

the sub-σ-field of Fk,m generated by the random variables 1(Gk,1), . . . ,1(Gk,m) such that P
(
1(Gk,m) = ζ | F̃

(ζ)
k,m

)
= 1.

Revisiting (28), we obtain through the triangle inequality and (29)∣∣∣∣∣∣∣ 1
M

M∑
i=m

(
E

[
1(Gk,i) |Fk,m

]
− E

[
1(Gk,i) |Fk,m−1

] )∣∣∣∣∣∣∣ ≤ 1
M

M∑
i=m

∣∣∣E [
1(Gk,i) |Fk,m

]
− E

[
1(Gk,i) |Fk,m−1

]∣∣∣
≤

1
M

M∑
i=m

∣∣∣∣E [
1(Gk,i) | F̃

(0)
k,m

]
− E

[
1(Gk,i) | F̃

(1)
k,m

]∣∣∣∣
=

1
M

M∑
i=m

∣∣∣∣P (
Gk,i | F̃

(0)
k,m

)
− P

(
Gk,i | F̃

(1)
k,m

)∣∣∣∣
≤

1
M

1 +

M∑
i=m+1

ϑk,m,i

 ,

(30)

defining, for each k ∈ {0, 1, . . . , p} and m ∈ {1, . . . ,M},

ϑk,m,i B
1
2

1∑
v=0

∣∣∣∣P (
1(Gk,i) = v | F̃(0)

k,m

)
− P

(
1(Gk,i) = v | F̃(1)

k,m

)∣∣∣∣ , i ∈ {1, . . . ,M}. (31)

In words, ϑk,m,i is the total variation distance between the conditional probability distributions of the Bernoulli random
variable 1(Gk,i) under the conditioning sub-σ-fields F̃(0)

k,m and F̃
(1)
k,m. Observe that ϑk,m,i = 1 when we have i = m, and

ϑk,m,i = 0 for all i < m. Note that each ϑk,m,i in (31) is a random variable, because the total variation distances are
between conditional probabilities which are conditional expectations and thus random variables. In order to obtain a
bound on the ϑk,m,i which holds with probability 1, we define the Bernoulli random variables

Bk,i B 1(Gk,i), for all k ∈ {0, 1, . . . , p} and all i ∈ {1, . . . ,M},

and the conditional probability distribution of Bk,i conditional on (Bk,1, . . . , Bk,i−1, Bk,i+1, . . . , Bk,M) to be

Pb
k,i(v) B P

(
Bk,i = v | Bk, j = b j, j ∈ {1, . . . ,M} \ {i}

)
, v ∈ {0, 1}, b ∈ {0, 1}M .

We can then bound each ϑk,m,i in (31) by

ϑk,m,i ≤ max
(b,b′)∈{0,1}M×{0,1}M : bi=b′i , i,m

dTV

(
Pb

k,i, P
b′
k,i

)
C δk,m,i. (32)

This results in the bound

∆k,m ≤ 1 +
∑

i∈{1,...,M}\{m}

δk,m,i, for all k ∈ {0, 1, . . . , p} and all m ∈ {1, . . . ,M}. (33)

Using (32) and (33), we revisit (27) to obtain, for t > 0, the inequality

P
(∣∣∣∣F̂N,k(X) − FN,k

∣∣∣∣ ≥ t
)
≤ 2 exp

(
−

2Mt2

Dk,N

)
, for all k ∈ {0, 1, . . . , p},

defining, for all N ∈ {3, 4, . . .} and all k ∈ {0, 1, . . . , p},

DN,k B
1
M

M∑
m=1

1 +
∑

i∈{1,...,M}\{m}

δk,m,i

2

,

observing that in general M will depend on N. By a union bound over the p+1 components of F̂N(X)−FN , we obtain

P
(
||F̂N(X) − FN ||∞ ≥ t

)
≤ 2 exp

(
−

2Mt2

DN
+ log(1 + p)

)
, t > 0,

definingDN B max{DN,0,DN,1, . . . ,DN,p}.
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Proof of Theorem 2: The assumptions of Theorem 2 ensure the assumptions of Theorem 1 are satisfied. Applying
Theorem 1, we have, for all ε > 0,

P
(
||F̂N(X) − FN ||∞ ≥ ε

)
≤ 2 exp

(
−

2 M ε2

DN
+ log(1 + p)

)
,

which in turn implies through the complement rule that

P
(
||F̂N(X) − FN ||∞ < ε

)
≥ 1 − 2 exp

(
−

2 M ε2

DN
+ log(1 + p)

)
≥ 1 − 2 exp

(
−

2 M ε2

DN
+ log(max{M, 1 + p})

)
.

Choosing

ε =

√
3
2

√
DN log(max{M, 1 + p})

M
establishes that

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 −
2

max{M, 1 + p}2
.

Proof of Theorem 3: By the complement rule,

P
(
||F̂N(X) − FN ||∞ < ε

)
= 1 − P

(
||F̂N(X) − FN ||∞ ≥ ε

)
. (34)

We lower bound the probability P
(
||F̂N(X) − FN ||∞ < ε

)
by upper bounding the probability P

(
||F̂N(X) − FN ||∞ ≥ ε

)
.

Applying the law of total probability, we obtain, for all ε > 0,

P
(
||F̂N(X) − FN ||∞ ≥ ε

)
= P

({
||F̂N(X) − FN ||∞ ≥ ε

}
∩ {X ∈ X0}

)
+ P

({
||F̂N(X) − FN ||∞ ≥ ε

}
∩

{
X ∈ Xc

0

})
,

which we then upper bound by

P
(
||F̂N(X) − FN ||∞ ≥ ε

)
≤ P

(
||F̂N(X) − FN ||∞ ≥ ε | X ∈ X0

)
+ P(X ∈ Xc

0)

≤ P
(
||F̂N(X) − FN ||∞ ≥ ε | X ∈ X0

)
+ r(N),

(35)

using the bound in (7) which implies P(X ∈ Xc
0) ≤ r(N). Note that the assumption of (7) ensures that the conditional

probability given in (35) is well-defined by assuming that r(N) ∈ (0, 1) so that P(X ∈ X0) ≥ 1 − r(N) > 0. We upper
bound the conditional probability P

(
||F̂N(X) − FN ||∞ ≥ ε | X ∈ X0

)
by manipulating the event of interest:

||F̂N(X) − FN ||∞ = || F̂N(X) − E[F̂N(X) | X ∈ X0]P(X ∈ X0) − E[F̂N(X) | X ∈ Xc
0]P(X ∈ Xc

0) ||∞

≤ || F̂N(X) − E[F̂N(X) | X ∈ X0]P(X ∈ X0) ||∞ + ||E[F̂N(X) | X ∈ Xc
0]P(X ∈ Xc

0) ||∞

≤ || F̂N(X) − E[F̂N(X) | X ∈ X0]P(X ∈ X0) ||∞ + r(N),

where we apply the law of total expectation in the first line, obtain the inequality in the second line from the triangle
inequality, and obtain the last inequality from the fact that, for all k ∈ {0, 1, . . . , p},∣∣∣∣E[F̂N,k(X) | X ∈ Xc

0]P(X ∈ Xc
0)
∣∣∣∣ ≤ P(X ∈ Xc

0) ≤ r(N),
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since E[F̂N,k(X) | X ∈ Xc
0] ∈ [0, 1] and using (7). Next, we apply the triangle inequality to obtain

|| F̂N(X) − E[F̂N(X) | X ∈ X0]P(X ∈ X0) ||∞

≤ || F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + ||E[F̂N(X) | X ∈ X0] − E[F̂N(X) | X ∈ X0]P(X ∈ X0) ||∞

= || F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + ||E[F̂N(X) | X ∈ X0] ||∞ (1 − P(X ∈ X0))

≤ || F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + P(X ∈ Xc
0)

≤ || F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + r(N),

again using the fact that E[F̂N,k(X) | X ∈ X0] ∈ [0, 1] and using (7). Altogether, we have shown the inequality

P
(
||F̂N(X) − FN ||∞ ≥ ε | X ∈ X0

)
≤ P

(
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + 2 r(N) ≥ ε | X ∈ X0

)
.

Next, applying Lemma 1, we have

P
(
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ + 2 r(N) ≥ ε | X ∈ X0

)
≤ P

(
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ ≥

ε

3

∣∣∣∣ X ∈ X0

)
+ 2P

(
r(N) ≥

ε

3

∣∣∣∣ X ∈ X0

)
= P

(
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ ≥

ε

3

∣∣∣∣ X ∈ X0

)
+ 21

(
r(N) ≥

ε

3

)
.

For the first term, we apply Theorem 1 to obtain

P
(
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ ≥

ε

3

∣∣∣∣ X ∈ X0

)
≤ 2 exp

(
−

2 M ε2

9DN
+ log(1 + p)

)
,

noting that the definition ofDN using (6) holds with probability 1 when conditioning on the event X ∈ X0. Choosing

ε =

√
27
2

√
DN log(max{M, 1 + p})

M

establishes that

P
|| F̂N(X) − E[F̂N(X) | X ∈ X0] ||∞ ≥

√
27
2

√
DN log(max{M, 1 + p})

M

∣∣∣∣ X ∈ X0

 ≤
4

max{M, 1 + p}2
.

Under the assumption that

r(N) ≤

√
DN log(max{M, 1 + p})

M
<

√
3
2

√
DN log(max{M, 1 + p})

M
=

ε

3
,

we have 1(r(N) ≥ ε / 3) = 0, which allows us to revisit (35) to obtain the bound

P
||F̂N(X) − FN ||∞ ≥

√
27
2

√
DN log(max{M, 1 + p})

M

 ≤ r(N) +
4

max{M, 1 + p}2
. (36)

We lastly revisit (34) with (36) to obtain the final bound

P
||F̂N(X) − FN ||∞ <

√
27
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 − r(N) −
4

max{M, 1 + p}2
.
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Proof of Corollary 1: The assumptions of Theorem 3 are met under the assumptions of Corollary 1, and we may
apply Theorem 3 to obtain the existence of a constant N0 ≥ 1 such that, for all N ≥ N0,

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 − r(N) −
4

max{M, 1 + p}2
.

Noting that M = N, p = N − 1, and r(N) = 2 /N2, in this example, we obtain

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(N)

N

 ≥ 1 −
6

N2 , for all N ≥ N0.

Under the assumption of both (8) and (9), we use the bound onDN presented in (10) to obtain

P
||F̂N(X) − FN ||∞ < (1 + Mmax + αmax)

√
3
2

√
log(N)

N

 ≥ 1 −
6

N2 , for all N ≥ N0.

We establish the asymptotic convergence result utilizing the Borel-Cantelli lemma (e.g., Theorem 4.1.3 of [6]). Define

εN B (1 + Mmax + αmax)

√
3
2

√
log(N)

N
, N ∈ {N0,N0 + 1, . . .},

and note that εN → 0 as N → ∞, by the assumption that Mmax + αmax = o
(√

log(N)/N
)
. Leveraging (37),

∞∑
N=1

P
(
||F̂N(X) − FN ||∞ ≥ εN

)
≤ N0 +

∞∑
N=N0

6
N2 ≤ N0 +

∞∑
N=1

6
N2 = N0 + π2 < ∞,

establishing through Theorem 4.1.3 of [6] that ||F̂N(X) − FN ||∞ converges almost surely to 0 as N → ∞.

Proof of Corollary 2: The assumptions of Theorem 3 are met under the assumptions of Corollary 2, and we may
apply Theorem 3 to obtain the existence of a constant N0 ≥ 3 such that, for all N ≥ N0,

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(max{M, 1 + p})

M

 ≥ 1 − r(N) −
4

max{M, 1 + p}2
.

Under the assumption of (16),

P(||X||1 ≥ Nβ) ≥ 1 −
2

N2 .

As a result, using the bound M ≥ Nβ and p = N − 2, we have, for all N ≥ N0 ≥ 3,

P
||F̂N(X) − FN ||∞ <

√
3
2

√
DN log(N)

Nβ

 ≥ 1 −
2

N2 −
4

(N − 1)2 ≥ 1 −
11
N2 ,

using the inequalities log(N − 1) ≤ log(N) (N ≥ 1) and

4
(N − 1)2 ≤

9
N2 , valid for N ≥ 3.

Under the assumption of both (13) and (14), we use the bound onDN presented in (15) to obtain

P
||F̂N(X) − FN ||∞ < (1 + Mmax + αmax)

√
3
2

√
log(N)

Nβ

 ≥ 1 −
11
N2 , for all N ≥ N0.
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We establish the asymptotic convergence result utilizing the Borel-Cantelli lemma (e.g., Theorem 4.1.3 of [6]). Define

εN B (1 + Mmax + αmax)

√
3
2

√
log(N)

Nβ
N ∈ {N0,N0 + 1, . . .},

and note that εN → 0 as N → ∞, by the assumption that Mmax + αmax = o
(√

log(N)/Nβ
)
. Leveraging (37),

∞∑
N=1

P
(
||F̂N(X) − FN ||∞ ≥ εN

)
≤ N0 +

∞∑
N=N0

11
N2 ≤ N0 +

∞∑
N=1

11
N2 = N0 +

11 π2

6
< ∞,

establishing through Theorem 4.1.3 of [6] that ||F̂N(X) − FN ||∞ converges almost surely to 0 as N → ∞.

Lemma 1. Let A, B, and C be random variables. Then, for all t > 0,

P(A + B + C ≥ t) ≤ P
(
A ≥

t
3

)
+ P

(
B ≥

t
3

)
+ P

(
C ≥

t
3

)
.

Proof of Lemma 1: Start by noting that the event{
A <

t
3

}
∩

{
B <

t
3

}
∩

{
C <

t
3

}
implies the event {A + B + C < t} .

As a result, De’Morgan’s law and a union bound shows that

P (A + B + C < t) ≥ P
({

A <
t
3

}
∩

{
B <

t
3

}
∩

{
C <

t
3

})
≥ 1 − P

({
A ≥

t
3

}
∪

{
B ≥

t
3

}
∪

{
C ≥

t
3

})
≥ 1 − P

(
A ≥

t
3

)
− P

(
B ≥

t
3

)
− P

(
C ≥

t
3

)
.

Re-arranging terms in the expression show that

P(A + B + C ≥ t) ≤ P
(
A ≥

t
3

)
+ P

(
B ≥

t
3

)
+ P

(
C ≥

t
3

)
.
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