
MODEL SELECTION FOR NETWORK DATA

BASED ON SPECTRAL INFORMATION

Jairo Ivan Peña Hidalgo AND Jonathan R. Stewart

Florida State University

Abstract: We introduce a new methodology for model selection in the context of

modeling network data. The statistical network analysis literature has developed

many different classes of network data models, with notable model classes including

stochastic block models, latent position models, and exponential families of random

graph models. A persistent question in the statistical network analysis literature lies

in understanding how to compare different models for the purpose of model selection

and evaluating goodness-of-fit, especially when models have different mathematical

foundations. In this work, we develop a novel non-parametric method for model

selection in network data settings which exploits the information contained in the

spectrum of the graph Laplacian in order to obtain a measure of goodness-of-fit for

a defined set of network data models. We explore the performance of our proposed

methodology to popular classes of network data models through numerous simulation

studies, demonstrating the practical utility of our method through two applications.

Key words and phrases: Statistical network analysis, network data, model selection,

social network analysis.

1. Introduction

Network data have witnessed a surge of interest across a variety of fields and disciplines in recent

decades, including the study of social networks (Lusher et al., 2013), network epidemiology (involv-

ing the spread of disease through networks of contacts) (Morris, 2004), covert networks of criminal

activity and terrorism (Coutinho et al., 2020), brain networks (Obando and de Vico Fallani, 2017),

financial markets (Finger and Lux, 2017), and more. Network data, as a data structure, are typi-

cally represented as a graph (Kolaczyk, 2009), consisting of a set of nodes representing the elements

of a population of interest (e.g., researchers in a collaboration network) and a set of pairwise ob-

servations or measurements between nodes represented as edges between nodes (e.g., co-authorship

on a paper).

Many classes of models have been proposed and developed to study and model network data.

A non-exhaustive review of some of the more prominent examples include exponential families of
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random graph models (ERGMs) (e.g., Lusher et al., 2013; Schweinberger et al., 2020), stochastic

block models (SBMs) (e.g., Holland et al., 1983; Anderson et al., 1992; Wang and Bickel, 2017),

latent position models (LPMs) (e.g., Hoff et al., 2002; Sewell and Chen, 2015; Tang et al., 2013;

Athreya et al., 2017), and more. Each class offers a unique mathematical platform for constructing

models of networks from observed network data, with respective strengths and weaknesses. The

exponential family class provides a flexible parametric platform for building models of networks

with dependent edges. In contrast, stochastic block models can capture network structure and

clustering of nodes through a discrete latent space, whereas latent position models capture network

structure and edge dependence through latent node positions in (e.g.) a latent Euclidean space.

A persistent challenge in statistical network analysis applications is how to compare different

models and select models for specific network data sets. At present, the literature has primarily

focused on model selection problems within each class of models, tailoring methods to specific classes

of models (SBMs: Wang and Bickel (2017); Latouche et al. (2014); ERGMs: Hunter et al. (2008);

LSMs: Ryan et al. (2017)). As a result, there is a gap in the literature which explores methods

for comparing model fit or performing model selection across models from different mathematical

platforms, e.g., comparing an ERGM to an SBM to an LPM. In this work, we introduce a novel

non-parametric methodology for model selection in network data settings that can be applied to a

broad class of models under weak assumptions, capable of facilitating comparison of models with

different mathematical foundations. Our method utilizes information in the spectrum of the graph

Laplacian in order to select a best fitting model for an observed network, and essentially only

requires the ability to simulate adjacency matrices from candidate models and compute eigenvalues

of the graph Laplacian derived from the adjacency matrices.

The rest of the paper is organized as follows. Section 2 reviews spectral properties of the graph

Laplacian for networks and motivates the use of spectral information in the model selection problem

for network data. Our proposed methodology is introduced in Section 3. We present experimental

studies and simulations in Section 4, and two applications of our methodology in Section 5.

2. Spectral properties of the graph Laplacian

We consider simple undirected networks defined on a set of N nodes with corresponding adjacency

matrix X ∈ {0, 1}N×N , where Xi,j = 1 corresponds to the event that there is an edge between

nodes i and j and Xi,j = 0 otherwise. We adopt the standard conventions that Xi,j = Xj,i an

Xi,i = 0. Extensions of our methodology to directed networks is discussed in Section 4. Extensions

to networks with valued edges is possible, but beyond the scope of this work. Let d = deg(X) =

(
∑N

j=1Xi,j : i = 1, . . . , N) ∈ RN be the vector of node degrees of the network. The Laplacian

matrix, also called the graph Laplacian, is defined as L(X) := diag(d)−X, where diag(d) is the N×

N diagonal matrix with diagonal d. Since L(X) is symmetric and positive semi-definite (Brouwer
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and Haemers, 2012), the eigenvalues of L(X) will all be real and non-negative. Throughout, we

will let λ ∈ RN denote the vector of ordered eigenvalues (from smallest to largest) of the Laplacian

matrix L(X). The vector λ will depend on the adjacency matrix X through L(X), however,

for ease of presentation, we do not make this dependence explicit notationally, as it will be clear

contextually.

Eigenvalues of Laplacian matrices encode many well known properties of a network. For ex-

ample, the multiplicity of the eigenvalue 0 corresponds to the number of connected components in

the network (Brouwer and Haemers, 2012). The second smallest eigenvalue (possibly 0) is known

as the algebraic connectivity (Fiedler, 1973), and measures the overall connectivity of a graph (de

Abreu, 2007). It is also used in stablishing Cheeger inequalities (Donetti et al., 2006), which have

applications in image segmentation (Shi and Malik, 2000), graph clustering (Kwok et al., 2013)

and expander graphs (Hoory et al., 2006). The subsequent eigenvalues of the Laplacian matrix are

related to the minimal cuts (weighted edge deleting) required to partition a network (Bollobás and

Nikiforov, 2004).

Two undirected graphs with adjacency matrices A and B are isomorphic if there exists a

permutation matrix P such that A = PBP t, which requires that the adjacency matrices be

similar A = P BP−1, noting that a permutation matrix P satisfies P t = P−1. In such cases, the

corresponding graph Laplacian matrices will be similar as well:

L(A) = deg(PBP t)− P BP t = P deg(B)P t − P BP t = P L(B)P t.

Consequently, since L(B) is Hermitian, there exists an eigen decomposition L(B) = UDU t.

Hence, L(A) = P (UDU t)P t = (P U)D (P U)t. As a result, if λ is a vector of eigenvalues

of L(B), it is also a vector of eigenvalues of L(A). In our context, this implies one can always

differentiate two non-isomorphic networks if their eigenvalues are different. The reverse result is

not true in general. There are graphs possessing the same eigenvalue decomposition (referred to as

cospectral or isospectral) which are not isomorphic (Cvetković et al., 1980). However, numerical

evidence suggests that the fraction of (non-isomorphic) cospectral graphs tends to zero as the

number of nodes in a graph grows (Brouwer and Haemers, 2012).

Several applications of spectral decomposition of the Laplacian matrix have been proposed

in the network analysis literature. For example, spectral clustering (Von Luxburg, 2007) is a

well known clustering algorithm based on the leading eigenvectors of the Laplacian of a similarity

matrix. Lei and Rinaldo (2015) established, under mild conditions, the consistency of the spectral

clustering method for stochastic block models. Another example is in Newman (2006), where

a family of community detection algorithms were proposed for networks based on the spectral

decomposition of the graph Laplacian. Lastly, Shore and Lubin (2015) proposed a statistic for

evaluating goodness-of-fit for network models reminiscent of the R2 statistic in regression settings,
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which compares eigenvalues of the graph Laplacian generated from a model fit to the eigenvalues

of the graph Laplacian from a pre-specified null model (typically taken to be a Bernoulli random

graph model, referred to as a density only model).

In light of these results, it is natural to regard the vector of eigenvalues λ as a signature of

a network, containing important topographical and structural information which can be exploited

for the purposes of model selection. Our proposed methodology compares the empirical distribu-

tion of the spectrum of the graph Laplacian of candidate models to that of an observed network.

Our methodology is motivated by the following considerations regarding properties of the graph

Laplacian.

First, if the true data generating process is in the list of candidate models, the observed

eigenvalues derived from an observed network are expected to fall within the spectral distribution

of the data generating process. If, in practice, none of the proposed models are the true generating

process, candidate models can still be assessed by their ability to capture the spectrum of the

observed graph Laplacian, providing a means for developing a methods for model selection. Second,

we can obtain a relative measure of fit among competing models depending on how well the spectrum

of the observed graph Laplacian is captured by candidate models, providing a means to not only

select a best fitting model, but also to compare the fit of the best fitting model to unselected

alternatives. Third, our methodology requires no parametric assumptions on the data generating

process and is able to compare models across different mathematical platforms, including models

which do not have a well-defined likelihood function or which are constructed through a stochastic

process, an example of which are agent-based models (e.g., Snijders et al., 2010; Jackson and Watts,

2002) or generative algorithms based on preferential attachment models (e.g., Barabasi and Albert,

1999; Zeng et al., 2013).

3. Methodology

We outline a methodology for model selection in network data settings which exploits the spectral

properties of the graph Laplacian, motivated by considerations in the previous section. We assume

throughout that the network is completely observed, denoted by Xobs. The corresponding observed

vector of eigenvalues of the observed graph Laplacian L(Xobs) is denoted by λobs. Our fundamental

inferential goal is to select a best fitting model for the observed networkXobs from a set of candidate

models {M1, . . . ,MM} (M ≥ 2). We frame the problem as a classification problem and aim to

construct a classifier P : RN 7→ {1, . . . ,M} trained on the spectrum of the graph Laplacian for

each of the candidate models in order to predict a class m? ∈ {1, . . . ,M} for a given vector of

eigenvalues, namely λobs. We present our model selection method algorithm in Table 1.
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Model selection procedure:
1. Simulate K networks X(m,1), . . . ,X(m,K) from each of the candi-

date models model Mm ∈ {M1, . . .MM}.
2. For each X(m,k), compute the Laplacian matrix L(X(m,k)) and the

corresponding vector of eigenvalues λ(m,k) ∈ RN .
3. Construct a design matrix D ∈ R(KM)×N by stacking the KM

vectors of eigenvalues λ(m,k) to form the rows of D.
4. Train a classifier P : RN 7→ {1, . . . ,M} to predict a model m? ∈
{1, . . . ,M} using the K simulated vectors of eigenvectors λ(m,k)

for each class m ∈ {1, . . . ,M} contained in the design matrix D.
Feature engineering is advised at this stage.

5. Compute the Laplacian matrix L(Xobs) for the observed network
Xobs and the corresponding vector of eigenvalues λobs.

6. Predict a class m? = P(λobs) for the observed network using the
trained classifier from Step 4 and set M? = Mm? .

Table 1: Description of the model selection algorithm.

3.1 Selection of classifier

Real life networks can possess hundreds, thousands or even millions of nodes. As the dimension of

the vector of eigenvalues of the graph Laplacian matrices is equal to the number of nodes in the

network, classification methods based on eigenvalues of the Laplacian matrix will be prone to the

usual pitfalls of high dimensional classification problems. The literature for classification methods

is quite extensive, which makes the choice of classifier a critical step in our methodology, although

we show in Section 4 that the effect of the choice of classifier may not have a significant effect on

the results of our methodology under certain circumstances. In light of these results, we consider

practical concerns of the implementation of the choice of classifier.

Linear discriminant analysis, which requires the computation of the inverse of a covariance

matrix, has been shown in practice to suffer a decay in performance as the number of variables

increases and the sample size is fixed (Bickel and Levina, 2004). Alternative methods include sup-

port vector machines, neural networks, random forests, and boosting algorithms, which generally

perform well in high-dimensional settings (Hastie et al., 2011). Within this class is the eXtreme

Gradient Boosting (XGBoost) method, which offers both scalability and state-of-the-art perfor-

mance (Chen and Guestrin, 2016). In the rest of this paper we use exclusively XGBoost, with the

notable exception being Simulation study 5 in Section 4, in which we compare the performance of

different classifiers to establish the claim made earlier in this section.
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3.2 Relative measure of goodness-of-fit

Many classification algorithms return more than just a predicted class, often returning a vector

of propensity scores s = (s1, . . . , sM ) with the property that ‖s‖1 = 1. If several models were

considered, the propensity scores for many of the models can shrink simply because of the larger

number of classes being considered, meaning that the interpretation of propensity scores s1, . . . , sM

can depend on M . To overcome this issue and facilitate the comparison of fit between models,

we propose to normalize the propensity scores to obtain a measure of goodness-of-fit which is

independent of the number of candidate models M . To this end, we define

s̃i =
si
‖s‖∞

, i = 1, . . . ,M,

to be the normalized score, which is equal to 1 for the highest scoring model. For all remaining

models, the normalized score is a measure of the fit of the model relative to the highest scoring

model. By rescaling all propensity scores in this manner, the number of models M which is consid-

ered in the candidate set of models has no effect on the interpretation of the (relative) propensity

scores.

4. Simulation studies

We conduct a number of simulation studies to demonstrate the potential of our proposed method-

ology. Specifically, we aim to examine the extent to which the signature of a network is contained

within the spectrum of the graph Laplacian. Simulation studies permit knowledge of the true

data-generating model, which facilitates empirical studies which aim to clarify the conditions under

which our proposed methodology is able to successfully differentiate different network models and

structural properties of networks.

4.1 Simulation study 1: curved exponential families

We study the performance of our methodology on curved exponential families, which have gained

popularity in the social network analysis community (e.g., Snijders et al., 2006; Hunter and Hand-

cock, 2006), as well as other applications (e.g., Obando and de Vico Fallani, 2017; Schweinberger

et al., 2020; Stivala and Lomi, 2021). The prominence of curved exponential family parameteriza-

tions for random graph models emerged out of a desire to solve challenges related to degeneracy

and fitting of early and ill-posed model specifications (Snijders et al., 2006). Additionally, curved

exponential family parameterizations are able to parsimoniously model complex sequences of graph

statistics, such as degree sequences and shared partner sequences, without sacrificing interpretabil-
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Figure 1: We visualize the degree and ESP distributions of the Bernoulli and
GWESP model by simulating 1000 networks from (1) with data-generating
parameter vector (θ1, θ2, θ3) = (−2.5, 0, 1) (Bernoulli) and (θ1, θ2, θ3) =
(−2.5, .3, 1) (GWESP). Each column corresponds to each model and we evi-
dence the rightward shift in the degree and ESP distribution of the GWESP
model, relative to the Bernoulli model.

ity (Hunter, 2007; Stewart et al., 2019). A prototypical example used in the social network analysis

literature is the geometrically-weighted edgewise shared partner model, which models transitivity

through the shared partner sequence (Snijders et al., 2006; Hunter, 2007; Stewart et al., 2019).

We simulate networks according to the following model:

P(X = x) ∝ exp

(
θ1

N∑
i<j

xi,j +

N−2∑
t=1

N∑
i<j

ηt(θ2, θ3) SPt(x)

)
, (1)

where θ1 ∈ R controls the baseline propensity for edge formation, and

ηt(θ2, θ3) = θ2 exp(θ3) [1− (1− exp(−θ3 t)] , t ∈ {1, . . . , N − 2},

parameterizes the sequence of shared partner statistics

SPt(x) =

N∑
i<j

xi,j 1

 N∑
h 6=i,j

xi,h xh,j = t

 , t ∈ {1, . . . , N − 2}.

In words, SPt(x) counts the number of edges in the network between nodes which have exactly

t mutual connections, commonly called shared partners in the social network analysis literature.

While θ2 ∈ R, in typical applications θ2 ≥ 0 and θ3 ∈ (0,∞), as values of θ3 < − log 2 correspond
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Figure 2: Results of Simulation study 1. (left) Estimate of the correct clas-
sification rate with 95% confidence band for networks of sizes N = 25, 50, 75.
(right) Estimate of the correct classification rate with 95% confidence band
for networks of sizes N = 100, 200, 300.

to models which are unstable in the sense of Schweinberger (2011), and empirical evidence suggests

that θ3 ∈ (0,∞) in many applications (Schweinberger, 2011; Stewart et al., 2019). The effect that

the GWESP model specified by (1) has on the degree and shared partner distributions of networks

is visualized in Figure 1, where positive values of θ2 stochastically encourage network formations

with more transitive edges, i.e., edges between nodes with at least one shared partner, relative to

the Bernoulli random graph model with θ2 = 0. This is evidenced by the rightward shift in the

ESP distribution of the GWESP model, relative to the Bernoulli model.

We take the true data-generating model M? to be the curved exponential family specified by

(1) with parameter vector θ? = (−2.5, θ2, 1), with θ2 on a grid covering the interval [0, 0.5]. Note

that when θ2 = 0, the model reduces to a Bernoulli random graph model with edge probability

p = [1 + exp(−2.5)]−1. We consider the problem of selecting between two models M1 and M2,

where M? = M1 and M2 is the Bernoulli random graph model with edge probability p = [1 +

exp(2.5)]−1. By varying θ2 we are able to study the threshold of effect size (θ2) for which we are

able to correctly detect the presence of transitivity in the network, as modeled by the geometrically-

weighted edgewise shared partner model in (1).

We vary the network size N = 25, 50, 75, 100, 200, 300, performing 5000 replicates for each

network size. The results of this simulation study are summarized in Figure 2. When θ2 is close to

0, the point at which M1 = M2, as discussed above, our methodology tends to select M1 and M2

with equal probability. However, once θ2 is sufficiently large (relative to the network size N), our

methodology correctly selects M1 in almost every replicate. The effect of the size of the network is

seen as we vary N from 25 to 300. When the network size is larger (N = 100, 200, 300), we are able
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Figure 3: Results of Simulation study 2. Estimates of the correct classification
rate with 95% confidence band for various network sizes N .

to correctly find the data-generating model M1 with high probability for smaller values of θ2. In

contrast, we require θ2 ≥ .25 before we are able to have a high confidence in correctly selecting the

data-generating model in networks of size N = 75, requiring θ2 ≥ .5 for networks of size N = 25.

4.2 Simulation study 2: reciprocity in directed net-

works

When the adjacency matrix X is undirected, the corresponding Laplacian matrix L(X) will be

positive semidefinite (Brouwer and Haemers, 2012), resulting in a real-valued vector of eigenvalues

λ ∈ RN . However, when X is the adjacency matrix of a directed network, the graph Laplacian,

as defined for undirected networks, may not be positive semidefinite, and may involve complex

valued eigenvalues. A common adaptation for directed networks in the literature is to consider the

incidence matrix B ∈ {0, 1,−1}N×|E|, where |E| is the total number of edges in the network. On

each column of the incidence matrix exactly one element will be −1, indicating the node where an

edge begins, and exactly one element will be 1, indicating the node where said edge ends. Every

other entry is zero. In this manner, a directed network is completely specified by listing all existing

edges as columns that indicate which nodes are connected and an orientation between them. We

can adapt our proposed methodology to directed networks by considering the symmetric graph

Laplacian defined by L := BtB (Brouwer and Haemers, 2012).

We simulate directed networks from the probability mass function

P(X = x) ∝
N∏
i<j

exp

(
θ1 (xi,j + xj,i) +

θ2
2
xi,j xj,i

)
, (2)
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We apply our methodology taking M1 to be the density only model with fixed θ2 = 0 in (2). We

take M? = M2 to be the general model specified via (2) with unrestricted parameters. We conduct

a simulation study by taking θ1 = −2.5 in both M1 and M2, taking θ2 = 0 in M1, and varying θ2 on

a uniform grid of 100 values in [0, 1] for M2. The simulation results in Figure 3 are based on 1000

replications in each case, reconfirming findings in the previous simulation study which suggested

that the ability of our methodology to detect the true data-generating model depends on how far θ2

is from 0, the point at which M1 = M2, and the size of the network. Moreover, this study uniquely

demonstrates that our methodology can be applied successfully to directed networks.

4.3 Simulation study 3: latent position models

Latent variable models for networks, especially latent position models, have witnessed increased

popularity and attention since the seminal work of Hoff et al. (2002). In this class of models,

nodes are given a latent position zi ∈ Z (i = 1, . . . , N) in a latent space, typically taken to be the

Euclidean space (i.e., Z = Rk), although alternative spaces and geometries have been proposed as

well, as is the case of ultrametric spaces (Schweinberger and Snijders, 2003), dot product similarity

resulting in bilinear forms (Hoff et al., 2002; Athreya et al., 2017), as well as hyperbolic (Krioukov

et al., 2010) and elliptic geometries (Smith et al., 2019). Edges in the network are assumed to

be conditionally independent given the latent positions of nodes. Following Hoff et al. (2002), we

simulate networks in this study accordingly:

log
P(Xi,j = 1 |zi,zj)
P(Xi,j = 0 |zi,zj)

= θ − ‖zi − zj‖2, (3)

where θ ∈ R and zi,zj ∈ Rk. Under this specification, the odds of two nodes forming an edge

decreases in the Euclidean distance ‖zi− zj‖2 between the positions of the two nodes in the latent

metric space.

We explore the ability of our methodology to detect the true dimension of a latent space

by generating networks from the latent Euclidean model described above, varying the dimension

of the latent metric space k ∈ {1, 2, 3, 4, 5}. Latent positions of nodes are randomly generated

from a multivariate normal distribution in dimension k ∈ {1, 2, 3, 4, 5} with zero mean vector

and identity covariance matrix. The candidate competings models are generated in the same

fashion across dimensions 1, . . . , 5. We set θ = −2.5 to ensure a low baseline probability of edge

formation, reflecting the sparsity of many real-world networks, and vary the network size N ∈

{50, 100, 150, 200, 250}. We apply our model selection methodology in each case and compute the

percentage of times our methodology selects each of the candidate latent space models.

We summarize the results of the simulation study in Figure 4, which demonstrates that our

methodology is able to correctly identify the true dimension of the data-generating latent space
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Figure 4: Results of Simulation study 3. Estimates of the correct classifica-
tion rate with 95% confidence intervals for selected network sizes and across
various latent space dimensions. The diagonal panels correspond to correct
classification where the selection rate is desired to be highest.

model provided the network size is sufficiently large. The diagonal panels in Figure 4 correspond

to correct selection of the dimension of the latent space. Of particular note, the problem becomes

more challenging as the dimension of the latent space grows, but this effect is mitigated as the

network size increases, with most correct selection rates in this study close to 1 for networks of size

N = 250.

4.4 Simulation study 4: comparing different latent mech-

anisms

We next study whether our proposed methodology is capable of distinguishing different latent

mechanisms for edge formation in a latent position model. The first one is the same latent space

model specified in (3), while the second one replaces the Euclidean distance term −‖zi−zj‖2 with

the dot product zt
izk, commonly referred to as a bilinear form. A related class of latent position

models which utilize bilinear forms of latent node positions are random dot product graphs (Athreya

et al., 2017). As in the previous simulation study, latent positions of nodes are randomly generated

from a multivariate normal distribution with zero mean vector but this time with covariance matrix

σ2 I, with I being the identity matrix (of appropriate dimension) and σ2 ∈ {0.1, 0.2, . . . , 1.0} a
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Figure 5: Results of Simulation study 4 comparing a distance based model
(true model) to a similarity based model. Estimates of the correct classification
rate with 95% confidence band for different networks at different sizes and
across different dimensions of latent spaces.

scale factor. As the scale factor tends to zero, both models converge to a density only model so

detecting the true generating process becomes more difficult. We summarize the results of the

simulation study in Figure 5, which demonstrates that our methodology is able to correctly identify

the true model (distance based) when compared to a bilinear (similarity based) model. Of particular

note, performance improves as the dimension of the latent space increases and as the network size

increases, as in the previous studies conducted.

4.5 Simulation study 5: effect of the choice of classifier

In this study, we repeat Simulation study 1 using three different classifiers, XGBoost (Chen and

Guestrin, 2016), Random Forest (Ho, 1995; Liaw and Wiener, 2002) and Naive Bayes (Hand and

Yu, 2001; Majka, 2019). Doing so allows us to examine the effect that the choice of classifier

has on the results of this simulation study, as well as to explore the relative effectiveness of each

classifier in this simulation study. Figure 6 shows a similar performance for all classifiers in this

simulation study, with the notable exception being the naive Bayes classifier when networks are

size 25, suggesting that the choice of classifier has a weak effect on the performance of our proposed

methodology, provided the network is sufficiently large. In line with conclusions in the previous

simulation studies, larger network sizes result in more pronounced model signatures. In light of
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Figure 6: Results of Simulation study 5. Estimates of the correct classification
rate with 95% confidence band for different classifiers.

these results, the effect of the choice of classifier appears to diminish if the model signal is sufficiently

strong.

5. Applications

In order to study the performance of our proposed model selection methodology in applications to

real-world network data, we study two network data sets which have previously been studied in

the literature, in order to have a baseline for evaluating whether our methodology confirms existing

results and knowledge about these networks.

5.1 Application 1: Sampson’s monastery network

We apply our model selection methodology to the Sampson’s monastery network data on social

relationships (likeness) among 18 monk novices in a New England monastery in 1968 (Sampson,

1968). Based on the existing literature studying this network, we propose different model structures

for this network which are well-designed to capture the community structure known to be a critical

component of the network. In order to model this structure, stochastic block models have been

applied to the network (Airoldi et al., 2008), as well as latent position models with a hierarchical

group-based prior distribution structure on the latent positions (Handcock et al., 2007). We consider

the following models:

• SBM: M1–M4 correspond to stochastic block models with K = 1, 2, 3, 4 blocks (M1 being

equivalent to a density only model).

• LPM: M5–M8 correspond to latent position models with model terms for density and reci-

procity and latent space dimensions K = 1, 2, 3, 4.
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Model si s̃i Model si s̃i

M1

(SBM, K = 1)
0.002 0.004

M2

(SBM, K = 2)
0.003 0.007

M3

(SBM, K = 3)
0.032 0.077

M4

(SBM, K = 4)
0.410 1

M5

(LPM, d = 1)
0.028 0.068

M6

(LPM, d = 2)
0.028 0.069

M7

(LPM, d = 3)
0.005 0.013

M8

(LPM, d = 4)
0.003 0.008

M9

(GLPM, K = 2, d = 1)
0.023 0.055

M10

(GLPM, K = 3, d = 1)
0.044 0.108

M11

(GLPM, K = 4, d = 1)
0.043 0.104

M12

(GLPM, K = 2, d = 2)
0.060 0.147

M13

(GLPM, K = 3, d = 2)
0.083 0.202

M14

(GLPM, K = 4, d = 2)
0.036 0.089

M15

(GLPM, K = 2, d = 3)
0.020 0.050

M16

(GLPM, K = 3, d = 3)
0.041 0.101

M17

(GLPM, K = 4, d = 3)
0.061 0.148

M18

(GLPM, K = 2, d = 4)
0.012 0.029

M19

(GLPM, K = 3, d = 4)
0.030 0.074

M20

(GLPM, K = 4, d = 4)
0.035 0.085

Table 2: Propensity scores si and normalized propensity scores s̃i for models
M1–M20 for the Sampson’s monastery network.

• GLPM: M9–M20 combine the two previous specifications by utilizing the hierarchical group-

based prior distribution structure of Handcock et al. (2007), considering all combinations of

group number K = 2, 3, 4 and latent space dimension d = 1, 2, 3, 4.

Each model was fit and our model selection methodology was applied to choose a best fitting

model. The latent space models were fit with Krivitsky and Handcock (2014) and the stochastic

block models were fit with Leger (2016). Table 2 presents the results. The model with the highest

propensity score is M4, the stochastic block model with K = 4 blocks.

It has been well-established in the literature that the Sampson’s monastery network features

strong community structure (Handcock et al., 2007; Airoldi et al., 2008), featuring three labeled

groups. However, statistical analyses have revealed the presence of a potential fourth group, evi-

denced in analysis which employ mixed membership stochastic block models (Airoldi et al., 2008),

as well as evidence in studies which employ latent position models which suggests certain nodes

may have strong connections to two or more labeled groups (Handcock et al., 2007). Within the

context of the models we considered here, the choice of a stochastic block model with K = 4 blocks

appears to be sufficient to capture the mixing patterns of the communities as well as the reciprocity

14



0

50

100

100 200 300 400 500

Number of Triangles

C
ou

nt

Figure 7: Fit of the observed number of triangles in the Sampson network
relative to the distribution of triangles from simulated networks from M4. The
observed number of triangles is indicated in red.

from the inclusion of a reciprocity term. We hold the opinion that the expression of transitivity

is not sufficiently strong in this network, otherwise the latent position model with K = 4 groups

would potentially serve as a better model, as latent position models are able to capture network

transitivity through the latent metric space. Figure 7 supports this claim by simulating networks

from M4 and comparing the empirical triangle count distribution of these simulated networks to

the observed number of triangles in the network, demonstrating good model fit in this regard.

5.2 Application 2: multilevel school network

We end the section with an application to a multilevel network consisting of 6,607 third grade

students over 306 classes across 176 primary schools in Poland in the 2010/2011 academic year

(Maluchnik and Modzelewski, 2014). Our interest in this data set lies in the fact that it has

already been extensively studied in Stewart et al. (2019), which provides the closest we can get

to a data-generating model. The network contains 306 classes, but features a significant portion

of non-response resulting in a large percentage of missing edge data in the network. The issues

of missing data require careful consideration and are beyond the scope of this work. As such, we

restrict our study in this work to the 44 classes within the multilevel network that did not feature

any missing edge data. The data set employed is a directed network of 906 nodes corresponding

to the individual students within the 44 classes without missing edge data, where a directed edge

i → j implies that person i stated they were friends person j. Part of the data collected included

the sex of each student (recorded as male or female). This multilevel network data set naturally

fits into the local dependence framework of Schweinberger and Handcock (2015), for which class

based sampling is justified under the local dependence assumption (Proposition 2 & Theorem 2,

15



Model Term M1 M2 M3 M4

Edges X X X X
Mutual X X X X
Out-degrees (1–6) X X X X
Out-degree (Female) X X X X
In-degree (Female) X X X X
Sex-match X X X X
GWESP (decay parameter fixed at 0) X
GWESP (decay parameter fixed at .25) X
GWESP (decay parameter estimated) X

Table 3: Descriptions of Models 1–4 found in Stewart et al. (2019).

Schweinberger and Stewart, 2020); additional details of the data set can be found in Stewart et al.

(2019).

In this application, we study whether our proposed methodology for model selection coincides

with published findings for this network by studying Models 1–4 published in Stewart et al. (2019),

which we summarize in Table 3. The first three model terms (edges, mutual, and out-degree terms)

control for structural effects within the network, including density, reciprocity, and fitting the degree

distribution. The next three model terms adjust for different sex-based edge effects and homophily.

The last three model terms correspond to the geometrically-weighted shared partner (GWESP)

term specified in (1) that was studied in Simulation study 1. The inclusion of this model term is

aimed at capturing a stochastic tendency towards network transitivity and triad formations based

on values of the base parameter (θ2 in (1)) and the decay parameter (θ3 in (1)). Model 1 includes

no GWESP term, whereas Model 2 and Model 3 fix the decay parameter at specific values found

in the literature, reducing the curved exponential family to a canonical exponential family (see

discussions in Hunter (2007) and Stewart et al. (2019)). Model 4 estimates the decay parameter.

We fit each of the four models M1,M2,M3,M4 and apply our model selection methodology,

which selects model M4 (propensity = 0.997) above all other candidate models. This coincides

with the findings of Stewart et al. (2019), who explored the fit of various models to the data set

with respect to common-place heuristic measures (Hunter et al., 2008), as well as out-of-sample

measures and through the Bayesian Information Criterion (BIC). Figure 8 demonstrates the model

fit to important network features.
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geometry of complex networks. Phys. Rev. E 82, 036106.

Krivitsky, P. N. and M. S. Handcock (2014). latentnet: Latent position and cluster models for

statistical networks. The Comprehensive R Archive Network. R package version 2.5.1.

Kwok, T. C., L. C. Lau, Y. T. Lee, S. Oveis Gharan, and L. Trevisan (2013). Improved cheeger’s

inequality: Analysis of spectral partitioning algorithms through higher order spectral gap. In

Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, STOC ’13,

New York, NY, USA, pp. 11–20. Association for Computing Machinery.
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