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Abstract

Multilayer networks are a network data structure in which elements in a popula-
tion of interest have multiple modes of interaction or relation, represented by multiple
networks called layers. We propose a novel class of models for cross-layer dependence
in multilayer networks, aiming to learn how interactions in one or more layers may
influence interactions in other layers of the multilayer network, by developing a class
of network separable models which separate the network formation process from the
layer formation process. In our framework, we are able to extend existing single layer
network models to a multilayer network model with cross-layer dependence. We es-
tablish non-asymptotic bounds on the error of estimators and demonstrate rates of
convergence for both maximum likelihood estimators and maximum pseudolikelihood
estimators in scenarios of increasing parameter dimension. We additionally establish
non-asymptotic error bounds on the multivariate normal approximation and elabo-
rate a method for model selection which controls the false discovery rate. We conduct
simulation studies which demonstrate that our framework and method work well in
realistic settings which might be encountered in applications. Lastly, we illustrate
the utility of our method through an application to the Lazega lawyers network.
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work data, Markov random fields, graphical models
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1 Introduction

Multilayer networks have become a recent focal point of research in the field of statistical

network analysis [e.g., Lei et al., 2020, Caimo and Gollini, 2020, Arroyo et al., 2021, Kriv-

itsky et al., 2020, Chen et al., 2022, Sosa and Betancourt, 2022, Huang et al., 2022], arising

in applications where a common set of elements of a population of interest have multiple

modes of interaction with or relation to other elements in the population. A prototypical

example in the literature might be the Lazega law firm network [Lazega, 2001], in which

attorneys within a law firm have multiple modes of linkage, which include advice seeking,

friendship, collaboration, etc., each of which would form individual layers of the multilayer

network [Krivitsky et al., 2020]. A multilayer network is therefore a composite of multiple

individual networks, each defined by a distinct mode of interaction or relation.

Often, edges in one layer may depend on edges in another layer, giving rise to what

we call cross-layer dependence. Understanding drivers of edge formation in multilayer

networks requires learning dependence structures of the layers of multilayer networks. A

key challenge lies in the fact that the cross-layer dependence can be varied and complex. In

this work, we present a novel modeling framework for multilayer networks which provides

a flexible platform for extending single-layer network models to multilayer networks, with

the primary goal of learning cross-layer dependence structures of multilayer networks. A

key advantage of our framework is that we are able to account for and separate out the

network formation process from the layer formation process, enabling us to create a wide-

range of novel classes of multilayer network models by extending popular classes of network

models (e.g., exponential-family random graph models, stochastic block models, latent

space models), and employing Markov random field specifications to develop flexible and

comprehensive models of cross-layer dependence in multilayer networks. As a result, we

are able to jointly model both network structure and cross-layer dependence through what
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we refer to as a network separable framework for modeling multilayer networks.

Our main contributions in this work include:

1. Introducing a novel framework for modeling cross-layer dependence in multilayer

networks that synchronizes with current network models in the literature.

2. Deriving non-asymptotic theoretical guarantees in scenarios where the number of

parameters tends to infinity, which establishes bounds on the:

(a) Statistical error of both maximum likelihood and pseudolikelihood estimators.

(b) Error of the multivariate normal approximation of estimators.

3. Elaborate a model selection algorithm which controls the false discovery rate.

The rest of the paper is organized as follows. Section 2 introduces our modeling frame-

work and includes illustrative examples. Our main consistency results are contained in

Section 3, and our multivariate normal approximation theory is presented in Section 4. We

provide simulation results in Section 5 together with different testing procedures for model

selection which control the false discovery rate. An application of our developed framework

and methodology is given in Section 6, with a discussion presented in Section 7.

2 Modeling cross-layer dependence in multilayer networks

A multilayer network can be represented as a sequence of 1 ≤ K < ∞ random graphs

X(1), . . . ,X(K) each defined on a common set of N ≥ 3 nodes, which we take without loss

to be the set N = {1, . . . , N}. We call the graphs X(1), . . . ,X(K) the layers of the network,

and represent the multilayer network as the quantity X = (X(1), . . . ,X(K)).

Connections between pairs of nodes {i, j} ⊂ N in each layer k ∈ {1, . . . , K} are modeled
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by random variables

X
(k)
i,j =


1 nodes i and j are connected in layer k

0 otherwise

.

We refer to all connections across the K layers of a pair of nodes {i, j} ⊂ N as a dyad which

we denote by Xi,j = (X
(1)
i,j , . . . , X

(K)
i,j ) ∈ {0, 1}K . A multilayer network can alternatively

be represented by a collection of dyads where X = (Xi,j){i,j}⊂N.

For notational ease, we will consider undirected multilayer networks, which imply that

the network layers X(1), . . . ,X(K) are undirected random graphs; extensions to directed

multilayer networks or mixed multilayer networks with both directed and undirected layers

will typically be straightforward, involving only notational adaptations in subscripts in

most cases. We adopt the usual conventions for undirected networks, i.e., we assume that

X
(k)
i,j = X

(k)
j,i (all {i, j} ⊂ N, 1 ≤ k ≤ K) and X

(k)
i,i = 0 (all i ∈ N, 1 ≤ k ≤ K). The sample

space of each layer X(k) is therefore the product space X(k) := {0, 1}(
N
2 ) (k = 1, . . . , K),

and the sample space X of X is the product space of the sample spaces of the individual

layers, i.e., X := X(1) × · · · × X(K). The sample space of dyad {i, j} ⊂ N is the product

space Xi,j := {0, 1}K .

A challenge in the statistical modeling of network data lies in the fact that networks

have many distinguishing properties, including:

1. Sparsity. Many real-world networks are sparse, in the sense that the expected num-

ber of edges in the network grows at a rate slower than
(
N
2

)
. The phenomena of

network sparsity manifests in a variety of different applications, usually due to con-

straints, such as time or financial constraints, which can limit the number of connec-

tions any node can maintain at a given point in time [Krivitsky et al., 2011, Krivitsky

and Kolaczyk, 2015, Butts, 2020].

2. Node heterogeneity. Different actors in a social network will have different proper-
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ties, called node covariates, which can lead to differing propensities to form edges. A

key example is assortative and disassortative mixing patterns in networks [McPher-

son et al., 2001, Krivitsky et al., 2009], as well as differences in structural patterns in

the network [Albert and Barabási, 2002, Li et al., 2012].

3. Edge dependence. In addition to node-based effects that give rise to heterogeneity

in propensities for nodes to form edges, scientific and statistical evidence suggests

edges are dependent in many applications [Holland and Leinhardt, 1972, Frank, 1980,

Goodreau et al., 2009, Block, 2015], and modeling single system of multiple binary

random variables without replication is a challenging statistical problem inherent to

many statistical network analysis applications.

Each of the above gives rise to distinct challenges for modeling network data and performing

statistical inference in statistical network analysis applications, and it is not straightforward

to construct models that due justice to each of these and more. To address these challenges,

a plethora of statistical models have been proposed to model network data, which for single-

layer networks have included exponential-families of random graph models [e.g., Lusher

et al., 2013, Holland and Leinhardt, 1981, Snijders et al., 2006, Schweinberger et al., 2020],

stochastic block models [e.g., Holland et al., 1983, Airoldi et al., 2008, Rohe et al., 2011],

latent metric space models [e.g., Hoff et al., 2002, Tang et al., 2013, Sewell and Chen, 2015],

random dot product graphs [e.g., Athreya et al., 2018, Sussman et al., 2014], exchangeable

random graph models [e.g., Caron and Fox, 2017, Crane and Dempsey, 2018, Cai et al.,

2016], and more. In this work, we build on the many classes of network data models for

single layer networks by establishing a new framework for modeling multilayer networks

that is capable of extending existing single layer network models to a multilayer network

models which are capable of modeling cross-layer dependence and interactions.
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2.1 Network separable models of multilayer networks

Multilayer networks are subject to the same forces and phenomena as single layer networks,

as multiple modes of relation or interaction do not remove constraints or properties of nodes

which are fundamental to network data applications. In order to develop a novel class of

models for cross-layer dependence in multilayer networks, we extend the broad literature

of single-layer network models by proposing a class of network separable multilayer net-

works which separates the network formation process from the layer formation process. We

explain this distinction through the introduction of our modeling framework.

We introduce a network separable model for multilayer networks by specifying proba-

bility distributions on a double of networks (X,Y ), where Y will represent the network

formation process, which we will call the basis network, and X will represent the realized

multilayer network. We assume that Y ∈ Y := {0, 1}(
N
2 ) is an undirected, single-layer

network defined on the set of nodes N where

Yi,j =


1 nodes i and j are connected in the basis network

0 otherwise

,

for each {i, j} ⊂ N, making the usual conventions for undirected networks mentioned

previously. We consider semi-parametric families of probability distributions {Pθ : θ ∈ Rp}

for (X,Y ) which are absolutely continuous with respect to a σ-finite measure ν defined

on P(X×Y), where P(X×Y) is the power set of X×Y. Typically, ν will be the counting

measure, however sparsity inducing reference measures are also admissible and have found

application in network data applications in order to model sparse networks [Butts, 2020,

Stewart and Schweinberger, 2021]. We say the family F := {Pθ : θ ∈ Rp} is network

separable if each Pθ ∈ F admits the form:

Pθ({(x,y)}) = f(x,θ) g(y) h(x,y) ψ(θ,y), (x,y) ∈ X× Y, (1)
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where

• h : X× Y 7→ {0, 1} is given by

h(x,y) =
∏
{i,j}⊂N

1(||xi,j||1 > 0)yi,j 1(||xi,j||1 = 0)1−yi,j ,

where xi,j = (x
(1)
i,j , . . . , x

(K)
i,j ) ∈ Xi,j ({i, j} ⊂ N).

• f : X× Rp 7→ (0, 1) is given by

f(x,θ) =
∏
{i,j}⊂N

exp

(
K∑
k=1

θk x
(k)
i,j +

K∑
k<l

θk,l x
(k)
i,j x

(l)
i,j + . . .

+
K∑

k1< ...<kH

θk1,k2,...,kH x
(k1)
i,j · · · x

(kH)
i,j

)
,

where H ≤ K is the highest order of cross-layer interactions included in the model.

We write θk1,k2,...,kh to reference the h-order interaction parameter for the interaction

term among layers {k1, . . . , kh} ⊆ {1, . . . , K}.

• ψ : Θ× Y 7→ (0,∞) is defined by

ψ(θ,y) =

[∑
x∈X

f(x,θ)h(x,y)

]−1
,

and functions to ensure summation to one so that the specification in (1) will be a

valid probability mass function for (X,Y ).

• g : Y 7→ (0, 1) is the marginal probability mass function of Y and is assumed to be

strictly positive on Y.

The notation Pθ({(x,y)}) is well-defined for each (x,y) ∈ X×Y, as Pθ is a probability

measure defined on P(X×Y). In an abuse of notation, we will frequently write probability

expressions Pθ(X = x,Y = y) for the joint probability of {(x,y)}, and Pθ(X = x |Y = y)

for the conditional probability of the event X = x conditional on the event Y = y. We
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denote the data-generating parameter vector by θ? ∈ Rp, and the corresponding probability

measure and expectation operator by P ≡ Pθ? and E ≡ Eθ? , respectively.

The terminology network separable is motivated by the fact that the specification in

(1) separates the network formation process Y , specified by g(y), from the layer formation

process, specified by f(x,θ). The two are joined by the function h(x,y), which ensures

||xi,j||1 = 0 whenever Yi,j = 0 and ||xi,j||1 > 0 whenever Yi,j = 1, and by ψ(θ,y) which en-

sures the resulting product of functions will be a valid probability mass function. The latter

has less of a direct role in modeling the cross-layer dependence and interaction between X

and Y , essentially fulfilling the role of a normalizing constant for the conditional probabil-

ity distribution of X given Y , as derived in Proposition 1. We call dyads {i, j} ⊂ N with

Yi,j = 1 activated dyads, as we allow edges between nodes i ∈ N and j ∈ N in X if and

only if {i, j} is an activated dyad. Such specifications have the advantage of being able to

specify the network formation process separately from the process that populates the layers

of activated dyads, thus modeling the cross-layer dependence conditional on the network

Y . A pair (x,y) ∈ X× Y that satisfies h(x,y) = 1 is said to be network concordant.

To illustrate the flexibility and generality of (1), observe that g(y) is allowed to be any

probability mass function for a single layer network Y (e.g., exponential-family random

graph model, stochastic block model, latent space model), provided g(y) > 0 for all y ∈ Y.

We therefore view our framework as semi-parametric as g(y) need not assume a specific

parametric form. Moreover, our framework can be viewed as non-parametric within the

family of network separable multilayer networks when the maximal possible order interac-

tion terms are included in (1), a point on which we further elaborate later. An important

feature of our framework lies in the fact that the choice of the probability distribution

for the network formation process does not directly influence inference for the cross-layer

dependence structure, i.e., the choice of g(y) does not directly influence inference for θ?.

Proposition 1 demonstrates this point in the case of likelihood-based inference.
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Proposition 1 Let {Pθ : θ ∈ Rp} satisfy (1). Then the following hold:

1. For each x ∈ X, Y = y (Pθ-a.s.) for one and only one y ∈ Y.

2. Y is predictable via X, i.e., for each x ∈ X, Pθ(Y = y |X = x) = 1 where

yi,j = 1(||xi,j||1 > 0), {i, j} ⊂ N.

3. For all (x,y) ∈ X× Y with h(x,y) = 1,

log Pθ(X = x,Y = y) = log Pθ(X = x | Y = y) + log g(y),

where Pθ(X = x |Y = y) belongs to a minimal exponential family with natural

parameter vector θ ∈ Rp and is given by

Pθ(X = x | Y = y) = exp(log f(x,θ) + logψ(θ,y)).

Proposition 1 establishes a few key facts for inference of cross-layer dependence struc-

tures in network separable multilayer networks. First, we are able to observe Y through

X, as given any observation x ∈ X of the multilayer network X, Pθ(Y = y |X = x) = 1

for one, and only one, y ∈ Y. In other words, through the observation of x, we can infer

with probability 1 the corresponding y due to the form of (1). The significance of this

result is that we do not need to treat the basis network Y as a latent network, which would

require additional statistical and computational methodology to handle the latent missing

data network. Second, we see that inference for θ? is unaffected by the choice of g(y);

although, the statistical guarantees for estimators of θ? will be indirectly influenced by the

choice of g(y), a point which we discuss in later sections. Moreover, the above choice for

f(x,θ) and the functional form of Pθ(X = x |Y = y) derived in Proposition 1 establishes

that log Pθ(X = x |Y = y) corresponds to the log-likelihood of a minimal exponential

family, accessing a broad literature of statistical methodology and theory [e.g., Sundberg,
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2019]. We note that other specifications for f(x,θ) are possible, but that Markov random

field specifications provide a powerful class of models for dependent data [e.g., Wainwright

and Jordan, 2008], and in the case of the saturated model with maximal interaction term

H = K, it completely specifies all possible probabilities of outcomes xi,j ∈ {0, 1}K , pre-

senting a non-parametric model class for network separable multilayer networks.

2.2 Example of a multilayer network with pairwise interactions

We illustrate cross-layer dependence among layers in our modeling framework by consider-

ing a network separable multilayer network model using the Markov random field specifi-

cation for f(x,θ) given in the previous section and maximal interaction term H = 2, i.e.,

we consider a Markov random field specification which includes all single-layer effects and

all pairwise interaction effects between layers. We can write this model down as

f(x,θ) =
∏
{i,j}⊂N

exp

(
K∑
k=1

θk x
(k)
i,j +

K∑
k<l

θk,l x
(k)
i,j x

(l)
i,j

)
. (2)

The dimension of the parameter vector θ is dim(θ) = K+
(
K
2

)
, withK parameters governing

the single-layer effects for the K layers and
(
K
2

)
combinations of layers to form the pairwise

interactions for the cross-layer dependence effects.

Define the (K-1)-dimensional vector X
(−k)
i,j := (X

(l)
i,j : l ∈ {1, . . . , K} \ {k}) to be the

vector of edge variables in Xi,j which excludes the edge variable X
(k)
i,j , i.e., the edge variable

between nodes i and j in layer k. The conditional log-odds of edge X
(k)
i,j takes the form:

log
P(X

(k)
i,j = 1 |X(−k)

i,j = x
(−k)
i,j , Yi,j = 1)

P(X
(k)
i,j = 0 |X(−k)

i,j = x
(−k)
i,j , Yi,j = 1)

=


θk +

K∑
l 6=k

θk,l x
(l)
i,j , ||x

(−k)
i,j ||1 > 0

+∞, ||x(−k)
i,j ||1 = 0

.

A primary advantage and motivation of using a parametric Markov random field specifica-

tion for f(x,θ) lies in the interpretability of the model. An effective approach to analyzing

and understanding marginal network effects in such specifications is to study conditional
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log-odds of edges under different conditioning statements [e.g., Stewart et al., 2019]. By

the form of h(x,y), when Yi,j = 1, we require ||xi,j||1 > 0, meaning nodes i and j must have

at least one connection in X. This is seen through the log-odds formula above, where the

log-odds of edge X
(k)
i,j is equal to +∞ when ||x(−k)

i,j ||1 = 0. In contrast, when ||x(−k)
i,j ||1 > 0,

the constraint ||xi,j||1 > 0 is already satisfied, and the log-odds of edge X
(k)
i,j depends on the

layer specific parameter θk, as well as the pairwise interaction effects where edges present in

other layers l ∈ {1, . . . , K}\{k} can influence the likelihood of the edge X
(k)
i,j depending on

the signs and magnitudes of the pairwise interaction parameters θk,l ({k, l} ⊆ {1, . . . K}).

3 Estimation of cross-layer dependence structure

Maximum likelihood estimation for network data with dependent edges faces significant

computational challenges, as the normalizing constants for such models are often compu-

tationally intractable, which makes direct maximization of likelihood functions infeasible

in general cases. For network separable multilayer networks satisfying (1), Proposition 1

establishes that the log-likelihood function takes the form

`(θ;x,y) := log Pθ(X = x,Y = y) = log Pθ(X = x |Y = y) + log g(y). (3)

Given an observation x ∈ X of the multilayer network X, and therefore an observation

y ∈ Y of Y by Proposition 1, we denote the set of maximum likelihood estimators by

Θ̂ :=

{
θ ∈ Rp : `(θ;x,y) = sup

θ′∈Rp

`(θ′;x,y)

}
,

and reference individual elements of the set by θ̂ ∈ Θ̂. As Proposition 1 establishes

log Pθ(X = x |Y = y) to be a minimal, and by construction regular, exponential family,

|Θ̂| ∈ {0, 1}, i.e., when the maximum likelihood estimator exists, the set Θ̂ will contain a

unique element when non-empty [Proposition 3.11, pp. 32–33, Sundberg, 2019].

Two predominant methods of approximating θ? when the likelihood function is com-

putationally intractable have emerged in the literature. Monte Carlo maximum likelihood
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estimation (MCMLE) [Geyer and Thompson, 1992], which constructs a simulation-based

approximation to the likelihood function in order to approximate the maximum likelihood

estimator, is an established method for approximating maximum likelihood estimators in

the statistical network analysis literature [Hunter and Handcock, 2006]. While able to pro-

vide accurate estimates of maximum likelihood estimators for complex models [e.g., Stewart

et al., 2019, Schweinberger et al., 2020], a drawback of MCMLE, and other simulation-based

estimation methodology, is the computational burden which can scale with both the com-

plexity of the model and the size of the network [Bhamidi et al., 2011]. In settings where

the computation of the MCMLE is impractical, a computationally efficient alternative is

provided via the maximum pseudolikelihood estimator (MPLE) [Besag, 1974], whose appli-

cation to social network analysis and to statistical network analysis dates back to Strauss

and Ikeda [1990]. As Proposition 1 establishes that Y is observable through X,

P(Yi,j = yi,j |X = x,Y−{i,j} = y−{i,j}) = 1,

when yi,j = 1(||xi,j||1 > 0) and Y−{i,j} is defined to be the (
(
N
2

)
-1)-dimensional vector of

edge variables in Y which excludes Yi,j. As a result, if (x,y) is network concordant, then

log P(Yi,j = yi,j |X = x,Y−{i,j} = y−{i,j}) = 0, for all {i, j} ⊂ N.

The log-pseudolikelihood of (1) can then be written down as

˜̀(θ;x,y) :=
∑
{i,j}⊂N

K∑
k=1

logPθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y), (4)

provided (x,y) is network concordant and by exploiting the conditional independence prop-

erties implied by (1). We denote the set of maximum pseudolikelihood estimators of the

data-generating parameter vector θ? by

Θ̃ :=

{
θ ∈ Rp : ˜̀(θ;x,y) = sup

θ′∈Rp

˜̀(θ′;x,y)

}
.
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Individual elements are referenced by θ̃ ∈ Θ̃. Uniqueness of maximum pseudolikelihood

estimators for exponential families is more complicated than for maximum likelihood es-

timators. However, our theoretical results establish that all elements θ̃ ∈ Θ̃ will all be

within the same Euclidean distance to θ?. The assumption that (x,y) is network con-

cordant comes at no cost since Y is predictable through X, as discussed above, mean-

ing that given an observation x of X, we can find the unique network concordant pair

(x,y) with probability one. The advantage of (4) is that the conditional probabilities

Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y) of edges in the multilayer network are often com-

putationally tractable since the conditional distribution is a Bernoulli distribution when

Yi,j = 1, and is a degenerate point mass at 0 when Yi,j = 0.

In this work, we consider both maximum likelihood estimators and maximum pseu-

dolikelihood estimators. As seen from the forms of `(θ;x,y) and ˜̀(θ;x,y) given above,

the gradients and Hessians of the log-likelihood and log-pseudolikelihood equations do not

directly depend on g(y), echoed by the results in Proposition 1. However, as mentioned in

the previous section, theoretical guarantees for estimators of θ? will be indirectly influenced

by the choice of g(y), a point supported by the following lemma.

Lemma 1 Consider a network separable family {Pθ : θ ∈ Rp} satisfying (1) and an ob-

servation x ∈ X of X and let (x,y) be the network concordant pair where y is given by

Proposition 1. Define, for each pair of nodes {i, j} ⊂ N,

Li,j(θ,xi,j,y) := log Pθ(Xi,j = xi,j |Y = y)

L̃i,j(θ,xi,j,y) :=
K∑
k=1

log Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y).
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Then there exist p× p matrices I(θ) and Ĩ(θ) such that

E [−∇2
θLi,j(θ,Xi,j,Y ) |Y = y] =


I(θ) Yi,j = 1

0p,p Yi,j = 0

E
[
−∇2

θL̃i,j(θ,Xi,j,Y ) |Y = y
]

=


Ĩ(θ) Yi,j = 1

0p,p Yi,j = 0,

for all {i, j} ⊂ N, where 0p,p is the p× p matrix with all 0 entries, and

λmin(−E∇2
θ `(θ;X,Y )) = λmin(I(θ))E ||Y ||1

λmin(−E∇2
θ
˜̀(θ;X,Y )) = λmin(Ĩ(θ))E||Y ||1,

where λmin(A) is the smallest eigenvalue of matrix A ∈ Rp×p.

In classical scenarios with independent and identically distributed observations, the

expected negative Hessian of the log-likelihood function is the Fisher information matrix

and is expected to scale with the number of observations. In such cases, standard matrix

theory shows the smallest eigenvalue of the expected negative Hessian of the log-likelihood

function will scale with the number of observations, provided the smallest eigenvalue of the

Fisher information matrix of the population from which observations are drawn is bounded

below. With regards to network separable multilayer networks, Lemma 1 demonstrates

such a scaling with respect to the expected number of activated dyads E ||Y ||1, proxying the

effective sample size. In similar fashion, I(θ) is analogous to the Fisher information of the

population distribution from which observations would be sampled in classical scenarios

with independent and identically distributed observations, and may be regarded as the

Fisher information of the population distribution for activated dyads in Y . With regards

to pseudolikelihood-based estimation, we have a similar interpretation.

We next present our theoretical guarantees for maximum likelihood and maximum

pseudolikelihood estimators in Theorem 1. As we will show in Theorem 1, the choice of
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g(y) influences the estimation error though the expected number of edges in Y and through

the covariances of edge variables in Y . Define [Dg]
+ := max{0, Dg}, where

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j, Yv,w),

and where {i, j} ≺ {v, w} implies the sum is taken with respect to the lexicographical

ordering of pairs of nodes. Let ε? > 0 be fixed independent of N and p and define

ξε? := inf
θ∈B2(θ?,ε?)

λmin(I(θ)) and ξ̃ε? := inf
θ∈B2(θ?,ε?)

λmin(Ĩ(θ)),

where B2(θ
?, ε?) = {θ ∈ Rp : ||θ? − θ||2 ≤ ε?}.

Theorem 1 Consider a multilayer network model satisfying (1) defined on a set of N ≥ 3

nodes and K ≥ 1 layers and assume that E ||Y ||1 ≥ 1 and p ≤ N . Then there exists N0 ≥ 3

such that, for all N ≥ N0, the following hold with probability at least 1− 3 (E ||Y ||1)−1:

1. (MLE) The set Θ̂ is non-empty and the unique element θ̂ ∈ Θ̂ satisfies

||θ̂ − θ?||2 ≤
√

3 p logN

E||Y ||1

√
1 + [Dg]+

ξε?
,

provided the right-hand side tends to 0 as N →∞.

2. (MPLE) The set Θ̃ is non-empty and each θ̃ ∈ Θ̃ satisfies

||θ̃ − θ?||2 ≤

√
3 pK2 logN

E||Y ||1

√
1 + [Dg]+

ξ̃ε?
,

provided the right-hand side tends to 0 as N →∞.

The results of Theorem 1 establish a few key facts concerning statistical estimation of

the parameter vector θ?. First, we can view the quantity ξε?
√
E ||Y ||1 /

√
1 + [Dg]+ as the

effective sample size in order to compare our results to classical settings with independent

and identically distributed data. The effective sample size, together with the dimension of

the model p, helps to determine the rate of convergence (with respect to the Euclidean dis-

tance) of maximum likelihood and pseudolikelihood estimators. As previously mentioned,
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the quantities E||Y ||1 and [Dg]
+ are determined by properties of g(y), the marginal proba-

bility mass function of Y . While specification of g(y) does not directly influence estimation

algorithms, the statistical guarantees of estimators will depend on g(y) producing enough

activated dyads and not possessing overly strong dependence among edges in the single

network Y . The requirement that the right-hand side of the bounds in Theorem 1 tend

to 0 as N → ∞ ensures that all regularity assumptions remain valid. Namely, key to our

approach lies in the ability to control minimum eigenvalues of matrices I(θ) and Ĩ(θ) in a

neighborhood of the data-generating parameter vector θ?. The condition that the bounds

tend to 0 ensures that it is sufficient to control the smallest eigenvalue in a bounded set,

i.e., we may let ε? be fixed independent of N , and moreover, to ensure consistency in the

sense that ||θ̂ − θ?||2 → 0 and ||θ̃ − θ?||2 → 0 (as N →∞) with probability approaching 1.

4 Error of the normal approximation and model selection

In this section, we show that a standardization of the maximum likelihood estimator (MLE)

of the data-generating parameter vector θ? of increasing dimension is asymptotically mul-

tivariate normal, i.e., we demonstrate a non-asymptotic bound on the error of the mul-

tivariate normal approximation and exhibit conditions on the scaling of relevant model

quantities—namely the dimension of the model p together with the scaling of the expected

number of activated dyads E ||Y ||1—under which the error bound on the multivariate nor-

mal approximation vanishes in the limit. Leveraging the consistency result in Theorem 1,

we may additionally exhibit the asymptotic normality of maximum pseudolikelihood esti-

mators (MPLE). Based on this result, we present a model selection method using multiple

hypothesis testing procedures that control the false discovery rate. The main result is pre-

sented in Theorem 2, the proof of which is based on a Taylor expansion of the log-likelihood

function and through the application of a Lyapunov type bound presented in Raič [2019].

16



In the following, Z will denote a standard multivariate normal random vector, i.e., with

mean vector equal to the zero vector and covariance matrix equal to the identity matrix

(each of appropriate dimension), and Φ will denote the corresponding probability measure.

Theorem 2 Under the assumptions of Theorem 1, there exists N0 ≥ 3 such that, for all

N ≥ N0 and any measurable convex set A ⊆ Rp, the error of the multivariate normal

approximation

∣∣∣P((I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− R̃ ∈ A)− Φ(Z ∈ A)
∣∣∣

is bounded above by

83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

where R̃ satisfies

P

(
||R̃||2 ≤

3
√

2 (1 + [Dg]
+)

ξ2ε?

p5/2 logN√
E ||Y ||1

)
≥ 1− 7

E ||Y ||1
− 8 [Dg]

+

(E ||Y ||1)2
.

Theorem 2 serves as a foundation for establishing the asymptotic normality of maximum

likelihood estimators θ̂ and maximum pseudolikelihood estimators θ̃, noting Theorem 1

established conditions under which both θ̂ and θ̃ are consistent estimators of θ? (with

respect to the Euclidean distance metric), assumptions which are met by Theorem 2. If

lim
N→∞

[
83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

]
= 0,

Theorem 2 implies (I(θ?) ||Y ||1)1/2 (θ̂− θ?)− R̃ will converge in distribution to a standard

multivariate normal random vector, as error bound on the multivariate normal approxima-

tion will vanish in this case. The term R̃ can be viewed as an error term, resulting from

the fact that the normal approximation in Theorem 2 is obtained via a multivariate Taylor

approximation in order to bridge the distributional gap between key statistics which admit

forms amenable to existing theorems for the normal approximation and the parameter vec-

tors of interest, thus introducing an additional source of error in the normal approximation.
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The same theory may be exported to the case of maximum pseudolikelihood estimators by

exploiting the consistency of both θ̂ and θ̃ (with respect to the Euclidean distance metric)

implied via Theorem 1 as the triangle inequality implies ||θ̂ − θ̃||2 ≤ ||θ̂ − θ?||2 + ||θ̃ − θ?||2.

While involved, the above condition for asymptotic multivariate normality essentially

places restrictions on the dependence induced through the single-layer network Y measured

by [Dg]
+, as well as the smallest eigenvalue of the dyad-based information matrix I(θ) in

a neighborhood of the data-generating parameter vector θ? as measured by ξε? , and the

dimension of the model p. As a result, if the information matrix I(θ) is nearly singular at

θ?, in which case ξε? will be small, the error of the normal approximation will be uniformly

larger (all else equal). Likewise, if the edge dependence in Y is large as measured by [Dg]
+,

we may not have sufficient activated dyads to ensure the error bound is small, as ||Y ||1 may

not be tightly concentrated around E ||Y ||1. The dependence of the error approximation

on the dimension of the random vector is a known challenge in establishing multivariate

normality [see, e.g., Raič, 2019]. All quantities which are not explicit constants can increase

or decrease with N , with the rates of these increases or decreases having implications for

the rate of convergence in distribution. Theorem 2 demonstrates that the allowable scaling

for most of quantities is with respect to the expected number of activated dyads E ||Y ||1.

We further examine Theorem 2 through an example where Y is a Bernoulli random

graph model, which assumes edge variables are independent Bernoulli random variables

with probability π ∈ (0, 1). Under this model, [Dg]
+ = 0 owing to the independence of

edge variables and E||Y ||1 = π
(
N
2

)
. Under this scenario, we can show that∣∣∣P((I(θ?) ||Y ||1)1/2(θ̂ − θ?)− R̃ ∈ A)− Φ(Z ∈ A)

∣∣∣ ≤ 166√
π ξ3ε?

p1.75

N
+

16

πN2
,

with the additional bound

P

(
||R̃||2 ≤

6
√

2

ξ2ε?

p2.5 logN

πN

)
≥ 1− 28

π N2
.

If ξε? and π are both bounded away from 0, then the error of the normal approximation
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will convergence to 0 provided (p2.5 logN) /N → 0 as N →∞, which is sufficient to ensure

||R̃||2 converges in probability to 0. Under the fully saturated model specification for (1)

(H = K), the Binomial theorem shows that p = 2K − 1 ≤ 2K . Hence, the dimension

restriction on p in turn implies a restriction on the allowable rate of growth of the number

of layers K with N , where a sufficient condition for (p2.5 logN) /N → 0 is for K ≤ .5 logN .

In other words, the number of layers K can grow at most logarithmically with N in the fully

saturated model. In cases when the number of interaction terms included in the cross-layer

dependence probability model is fixed, K may admit a sublinear scaling with N .

4.1 Model selection via univariate testing with FDR control

Provided with the consistency results and the multivariate normal approximation of θ̂

through Theorems 1 and 2, we outline a procedure for model selection that controls the

false discovery rate. Hotelling’s T -squared statistic can be used to conduct a global test for

H0 : θ? = µ versus H1 : θ? 6= µ, where µ ∈ Rp is the value of θ we want to test [Chapter

5, Johnson and Wichern, 2002]. We will mostly be interested in the case when µ = 0p, i.e.,

the zero vector of dimension p.

If the global test is rejected, or if the global test is not of interest, we can perform

model selection by leveraging the multivariate normal approximation to obtain univariate

normal approximation results for the components of θ̂ and proceed to test each component:

Hi,0 : θ?i = µi versus Hi,1 : θ?i 6= µi, for i = 1, . . . p and µi ∈ R. In general, µi = 0 will

allow us to test whether the estimated effect θ̂i is present in the model (i.e., whether

θ?i 6= 0). One challenge in this approach lies in the fact that the model selection procedure

is sensitive to multiple testing error. We propose to control the multiple testing error by

appropriate multiple testing adjustments by elaborating a model selection algorithm which

will control the false discovery rate in order to accurately learn the cross-layer dependence

effects present in the multilayer network, and in effect learning the cross-layer dependence
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structure of the multilayer network. We provide simulation examples of four different

univariate testing procedures including Bonferroni, Benjamini-Hochberg, Hochberg, and

Holm procedures in Section 5.2. In simulation studies, all four univariate testing procedures

exhibit strong statistical power for detecting non-zero parameters while controlling the

false discovery rate at a preset family-wise significance level. As Theorem 1 establishes

the consistency of both θ̂ and θ̃, the above procedure remains justifiable for performing

model selection with maximum pseudolikelihood estimators as well, as it is straightforward

to prove a corollary to Theorem 1 which establishes that ||θ̂− θ̃||2 converges in probability

to 0 under the assumptions of Theorem 1, further obtaining convergence in distribution.

5 Simulation studies

We conduct simulation studies to investigate the performance of the maximum pseudolike-

lihood estimation (MPLE) in realistic settings that could be encountered in application in

order to study the realized outcomes of the theoretical results established in Sections 3 and

4. In section 5.1, we demonstrate the consistency results of Theorem 1 for pseudolikelihood

estimators θ̃ in settings of different model-generating parameters and different basis net-

work structures of Y . We study the multivariate normal approximation of θ̃ established

by Theorem 2 (and by additionally leveraging the consistency result of Theorem 1) in the

simulation study conducted in Section 5.2. Lastly, we discuss several testing procedures

for selecting non-zero effects while controlling the false discovery rate (FDR) at a given

family-wise significance level α.

In all simulation studies, we sample network concordant multilayer networks (X,Y )

from (1) with the number of nodes varying from N = 200 to 1000 and K = 3 layers. The

basis network Y is generated from three different models: the Bernoulli random graph

model, the stochastic block model, and the latent space model. The layer mechanism of

20



0.00

0.25

0.50

0.75

1.00

200 400 600 800 1000

Dense Bernoulli basis network

0.00

0.25

0.50

0.75

1.00

200 400 600 800 1000

Sparse Bernoulli basis network

0.00

0.25

0.50

0.75

1.00

200 400 600 800 1000

SBM basis network

0.00

0.25

0.50

0.75

1.00

200 400 600 800 1000

LSM basis network

Box-plot of the relative ℓ2-error between θ~ and θ*

Network size N

R
el

at
iv

e 
er

ro
r

Figure 1: The relative `2-errors between θ̃ and θ? decrease as the network size increases in

four basis network structures.

the multilayer network is given by

f(x,θ) =
∏
{i,j}⊂N

exp

(
3∑

k=1

θk x
(k)
i,j +

3∑
k<l

θk,l x
(k)
i,j x

(l)
i,j

)
. (5)

5.1 Consistency of MPLE

The consistency of the maximum pseudolikelihood estimator θ̃ is demonstrated through

the decay of the relative `2-errors between θ̃ and the data-generating parameter θ?. We

generate M = 250 multilayer networks by M different model-generating parameters at five

network sizes from N = 200 to 1000. For each network size N , type of basis network Y ,

and replicate, we sample a network separable multilayer network X from (1) using the

specification in (5) with the data-generating parameter vector θ? populated by randomly

selecting each component from the uniform distribution on (−1, 1). We make the exception

that the third and the sixth components θ?3 and θ?1,3 are set to 0. In each replicate, we
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Figure 2: Q-Q plots and p-values of six components of θ̃ estimated from 250 multilayer

network samples at size 1000 on the dense Bernoulli basis network. The univariate normal

test failed to reject the null hypothesis that each component of θ̃ is marginally normal at

a significance level of .05.

compute the maximum pseudolikelihood estimator. The results of this simulation study

are given in Figure 1, which shows the decay of the relative `2-errors between θ̃ and θ? as

the network size increases in four different basis network structures. The broad selection

of model-generating parameter values on different basis network structures verifies that

Theorem 1 holds in many practical settings.

The top-left subplot of Figure 1 shows a baseline result for a dense Bernoulli basis

network with P(Yi,j = 1) = 0.8 for all {i, j} ⊂ N. As the network size increases from 200 to

1000, the relative `2-errors decrease to 0. The performance of MPLE on different structures

of the basis network Y is also studied with results being shown in the rest of the subplots

of Figure 1. Basis networks Y are generated by a sparse Bernoulli random graph (top-

right), by a stochastic block model (SBM, bottom-left), and by a latent space model (LSM,
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bottom-right). In contrast to the baseline result of the dense Bernoulli random graph,

where the basis network is populated with more dyadic connections owing to the fact that

the expected number of activated dyads E||Y ||1 is equal to .8
(
N
2

)
, the three different basis

structures possess fewer connections. A key example is the sparse Bernoulli basis network

which has a varying density of P(Yi,j = 1) = 20/N for all {i, j} ⊂ N, admitting a reciprocal

scaling with the network size N which results in a sparse network with bounded average

node degree. The SBM generated networks have 5 blocks where the within-block density is

.5 and the between-block density is .05 for all network sizes simulated. The LSM generated

networks follow the specifications of Hoff et al. [2002] with a fixed density parameter of .6.

We simulate node positions on the plane in R2, where coordinates of the position of each

node are randomly generated from the standard normal distribution. In order for SBM and

LSM generated basis networks to have a comparable number of effective sample size, the

parameters of the SBM and the LSM are chosen so that the expected number of activated

dyads E||Y ||1 in both basis networks is approximately .24
(
N
2

)
.

5.2 Multivariate normality of MPLE and model selection

As stated in Section 4 and Theorem 2, the distribution of the maximum likelihood estima-

tor θ̂ and the maximum pseudolikelihood estimator θ̃ converge in distribution to a mul-

tivariate normal distribution asymptotically. In order to study the quality of the normal

approximation—especially for univariate testing which would be used for false discovery

control and model selection—we randomly select 6 of the 250 data-generating parameter

vectors θ? used to study the consistency results of Theorem 1 in the simulation study

conducted in Section 5.1. We then generate 250 replicates of multilayer network samples

by each of these 6 parameter vectors, using specification (5) on different basis network

structures. The multivariate normality of θ̃ passed Zhou-Shao’s multivariate normal test

[Zhou and Shao, 2014], with p-values provided in the Appendix G.1 in the supplement to
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Table 1: False discovery rates of four procedures for detecting non-zero effects of 6 model-

generating parameters (θ?1, θ?2, θ?3, θ?4, θ?5, θ?6) estimated from 250 multilayer network

samples at size 1000 on the dense Bernoulli basis network. All FDRs are smaller than .05.

Procedure θ?1 θ?2 θ?3 θ?4 θ?5 θ?6

Bonferroni .004 .002 .001 .002 .001 .005

Benjamini-Hochberg .014 .014 .014 .011 .017 .020

Hochberg .012 .008 .009 .008 .011 .016

Holm .010 .008 .006 .008 .007 .013

this paper. We visualize the marginal normality of individual component in θ̃ with a dense

Bernoulli basis network in Figure 2, through Q-Q plots of the simulated maximum pseu-

dolikelihood estimators. Univariate tests for normality failed to reject the null hypothesis

that each component of θ̃ is marginally normal at a significance level of .05. Additional

results studying the multivariate normality of θ̃ on different basis network structures are

provided in Appendix G.1 in the supplement to this paper.

We then implement the multiple testing correction procedures of Bonferroni, Benjamini-

Hochberg, Hochberg, and Holm, for the 6 selected model-generating parameter vectors θ?

with 250 replicates to detect components that are significantly different from 0 while con-

trolling the false discovery rate (FDR) at a family-wise significance level of α = .05—recall

the third and the sixth component θ?1,3 and θ?3 of θ? are set to 0 in each simulation replicate.

We estimate the FDR of the four procedures by averaging the false discovery proportions

from 250 replicates of each of the 6 randomly selected model-generating parameters θ?.

We provide the estimated FDRs for θ? on a dense Bernoulli basis network in Table 1. In

addition, we show the receiver operating characteristic (ROC) curves for θ̃ estimating the

6 selected model-generating parameters in each of the subplot of Figure 3, on four basis
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Figure 3: ROC curves for θ̃ estimated from 250 multilayer network samples at size 1000 of

six model-generating parameters on four different basis networks.

network structures. Simulation results suggest that the false discovery rate is controlled

below the preset threshold α. Different model-generating parameter values affect the trade-

off between the sensitivity and the specificity of the model selection. In general, multilayer

networks with a larger effective sample size lead to a larger area under the ROC curve

which offers a tool to choose appropriate correction procedures and thresholds for model

selection in different scenarios. Additional results on the false discovery rate with different

basis network structures are provided in Appendix G.2 in the supplement to the paper.

6 Application

We present a case study using a dataset on corporate law partnership among a North-

eastern US corporate law firm in New England collected by Lazega [2001]. The dataset

collected information about three types of cooperation among 71 lawyers in the corporate
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Coworker Layer Advice Layer Friendship Layer

Figure 4: Coworker layer, advice layer and the friendship layer of Lazega’s corporate law

partnership network.

Table 2: Summary of Lazega’s corporate law partnership data with 71 lawyers (nodes).

Average Node Degree Number of Edges

Co-Worker Layer 11 378

Advice Layer 5 175

Friendship Layer 5 176

law firm, resulting in three networks including the strong-coworker network, the advice

network, and the friendship network. Since the cooperation relationship collected are not

symmetric, we only consider a connection to be present when both sides acknowledged their

cooperation. We treat these three types of networks as a three-layer multilayer network

embedded among the 71 lawyers. A summary of this multilayer network is provided in

Table 2. We apply model (1) with up to 2-layer interaction terms to the Lazega dataset,

i.e., θ = (θ1, θ2, θ3, θ1,2, θ1,3, θ2,3). The maximum pseudolikelihood estimator θ̃ is obtained

for θ and the results are provided in Table 3.

As shown in Table 3 of the MPLE of the Lazega network data, θ1, θ2, and θ3 correspond
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Table 3: MPLEs for parameters of the Lazega network.

θ̃1 θ̃2 θ̃3 θ̃1,2 θ̃1,3 θ̃2,3 P(Yi,j = 1)

−1.450 −3.334 −2.695 1.801 0.218 2.458 0.208

Coworker (C) Advice (A) Friendship (F) C × A C × F A × F Basis network Y

Figure 5: Box-plot of reproduced statistics from 10 replications for each dimension. Red

dots are values of the observed sufficient statistics of the Lazega network.

to single-layer effects of the strong-coworker network, the advice network, and the friendship

network, respectively, whereas θ1,2, θ1,3, and θ2,3 correspond to the layer interaction effects.

We can calculate the conditional log-odds of each edge being present in the multilayer

network given the rest of the network. For example, if lawyer i and lawyer j are observed

to have an advice relationship and are friends at the same time, the odds of these two

lawyers to have a strong-coworker relationship is given by

P(X
(C)
i,j = 1 |X(A)

i,j = 1, X
(F )
i,j = 1)

P(X
(C)
i,j = 0 |X(A)

i,j = 1, X
(F )
i,j = 1)

= exp
(
θ1 + θ1,2 x

(A)
i,j + θ1,3 x

(F )
i,j

)
= 1.767,

providing interpretation of the interaction and influence among the different layers.

Next, we use the estimated MPLE θ̃ to simulate networks of the same size and calculate
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the sufficient statistics of the simulated networks. Comparisons of the sufficient statistics

between the observed Lazega network and the simulated networks are provided in Figure

5. Such comparisons serve two key purposes. First, such comparisons are an established

method of diagnosing model fit in the statistical network analysis literature [Hunter et al.,

2008], and second, provide a check on the approximate solution to the score equation.

Note that MPLEs are not guaranteed to reproduce (on average) observed values of sufficient

statistics in exponential families—in contrast to MLEs. The relative `2-error of the sufficient

statistics between the observed and the average of 10 simulated networks is 0.013, suggesting

a successful re-construction of the observed network.

7 Discussion

In this work, we introduced a flexible class of statistical models for multilayer networks.

Key to our approach lies in the integrative nature by which we establish our framework,

extending arbitrary strictly positive probability distributions for single-layer networks to

multilayer-network models through a network separable framework with Markov random

field specifications. We established the foundations for statistical inference through consis-

tency and multivariate normality results, the results of which have been demonstrated in

simulation studies and in an application. The key assumption to our approach lies in the

network separability assumption, which necessitates network dyads be conditionally inde-

pendent given the basis network. This assumption may or may not be valid in practice,

which would necessitate the development of generalizations of the framework we established

in this work through the relaxation of the conditional independence assumption. Such re-

laxations would result in more complex dependence structures, requiring new and careful

theoretical treatment in order to establish similar statistical foundations of models to the

ones we have developed here, representing potential avenues for future research.
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A Proof of Proposition 1

We prove Proposition 1 from Section 2.

Proof of Proposition 1. For the first and second results, define the set

A+ := {(x,y) ∈ X× Y : h(x,y) = 1} ,

1



and the vector-valued map ϕ : X 7→ Y by defining its components to be

ϕi,j(x) = 1(||xi,j||1 > 0), {i, j} ⊂ N,

populating the vector ϕ(x) in the lexicographical ordering of the dyad indices {i, j} ⊂ N.

By the definition of h : X×Y 7→ {0, 1} and ϕ : X 7→ Y, ϕ(x) = y for each pair (x,y) ∈ A+.

Furthermore, the element y is unique for a given x ∈ X, because if there would exists some

y′ ∈ Y such that y 6= y′ with the property that {(x,y), (x,y′)} ⊆ A+, then there would

exist a pair {i, j} ⊂ N such that yi,j = 1− y′i,j, implying 1(||xi,j||1 > 0) 6= y′i,j, in which case

h(x,y′) = 0, contradicting the assumption that {(x,y)} ∈ A+. By (1), the functions f

and g are assumed to be strictly positive in their respective domains. Hence, (X×Y) \A+

is the largest null set of X×Y, i.e., Pθ(A) = 0 if and only if A ⊆ (X×Y) \A+. Thus, the

first and second results are established.

For the third result, note that g is assumed to be strictly positive on its domain Y.

Hence, g(y) = Pθ(Y = y) > 0 for all y ∈ Y and Pθ(X = x |Y = y) is therefore

well-defined. By definition,

Pθ(X = x |Y = y) =
Pθ(X = x, Y = y)

Pθ(Y = y)
,

where Pθ(Y = y) is the marginal probability of event Y = y and is assumed to be equal

to g(y). The model form for Pθ given in (1) implies

Pθ(X = x, Y = y)

Pθ(Y = y)
=

f(x,θ) g(y)ψ(θ,y)

g(y)
= exp(log f(x,θ) + logψ(θ,y)),

under the assumption that h(x,y) = 1. Hence,

Pθ(X = x,Y = y) = Pθ(X = X | Y = y) Pθ(Y = y)

so that

log Pθ(X = x,Y = y) = log Pθ(X = X | Y = y) + log g(y),

2



as g(y) is the marginal probability mass function of Y , i.e., Pθ(Y = y) = g(y). Lemma 4

establishes that Pθ(X = X | Y = y) belongs to a minimal exponential family, completing

the proof of the third and last result of the proposition.

�

B Proof of Lemma 1

We prove Lemma 1 from Section 2.

Proof of Lemma 1. We prove the result in the case of the log-likelihood function.

The proof in the case of the log-pseudolikelihood function follows similarly, substituting

the appropriate quantities relevant to the log-pseudolikelihood. Using (1),

−E∇2
θ `(θ;X,Y ) =

∑
y∈Y

∑
x∈X

−∇2
θ `(θ;x,y)Pθ(X = x |Y = y) g(y)

=
∑
y∈Y

g(y)
∑
x∈X

−∇2
θ `(θ;x,y)Pθ(X = x |Y = y)

=
∑
y∈Y

g(y)
∑

{i,j}⊂N : yi,j=1

I(θ)

= I(θ)
∑
y∈Y

g(y) ||y||1

= I(θ)E||Y ||1.

The above follows by exploiting the conditional independence of vectors xi,j ({i, j} ⊂ N)

given Y = y under (1), which implies

`(θ;x,y) =
∑
{i,j}⊂N

logPθ(Xi,j = xi,j |Y = y),

and from the fact that the conditional probability distribution of Xi,j given Y is a degen-

erate point mass at 0 when Yi,j = 0 so that −∇2
θ `(θ;x,y) is a sum of ||y||1 matrices each

3



equal to I(θ), i.e., given y ∈ Y, we have∑
x∈X

−∇2
θ `(θ;x,y)Pθ(X = x |Y = y)

=
∑
{i,j}⊂N

E
[
−∇2

θ Li,j(θ,Xi,j,Y ) |Y = y
]

=
∑

{i,j}⊂N : yi,j=1

I(θ).

The fact that I(θ) is constant for all pairs {i, j} ⊂ N satisfying Yi,j = 1 follows from the

form of (1), which assumes each vector Xi,j ({i, j} ⊂ N) is conditionally independent and

identically distributed, conditional on Y . Hence,

E [−∇2
θ `(θ;X,Y )] = I(θ)E ||Y ||1,

which in turn implies λmin(−E∇2
θ `(θ;X,Y )) = λmin(I(θ))E ||Y ||1.

�

C Concentration inequalities for multilayer networks

We establish concentration inequalities of gradients of log-likelihoods and log-pseudolikelihoods

functions of network separable multilayer networks in Lemma 2 and Lemma 3, respectively.

Recall the definition [Dg]
+ := max{0, Dg}, where

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j, Yv,w),

with {i, j} ≺ {v, w} implying the sum is taken with respect to the lexicographical ordering

of pairs of nodes, and where g : Y 7→ (0, 1) is the marginal probability mass function of Y .

Lemma 2 Consider multilayer networks satisfying (1) which are defined on a set of N ≥ 3

nodes and K ≥ 1 layers. Define γθ(x,y) := −∇θ `(θ;x,y), where `(θ;x,y) is the log-

likelihood function. Then, for all t > 0 and θ ∈ Rp,

P (||γθ(X,Y )− E γθ(X,Y )||∞ ≥ t) ≤ 2 exp

(
− t2

E ||Y ||1 + [Dg]+
+ log p

)
+

1

E||Y ||1
.

4



Proof of Lemma 2. By Proposition 1,

`(θ;x,y) = log Pθ(X = x |Y = y) + log g(y).

Thus,

∇θ `(θ;x,y) = ∇θ log Pθ(X = x |Y = y) +∇θ log g(y) = s(x)− Eθ s(X), (6)

as g(y) = Pθ(Y = y) is assumed to not be a function of θ. The last equality in (6) follows

from Lemma 4, which showed that Pθ(X = x |Y = y) is a minimal exponential family with

sufficient statistic vector s(x) defined in Lemma 4 and natural parameter vector θ ∈ Rp,

inserting the familiar form of the score equation of an exponential family with respect to

the natural parameter vector [e.g., Proposition 3.10, p. 32, Sundberg, 2019]. Thus,

−(γθ(X,Y )− E γθ(X,Y )) = s(X)− Eθ s(X)− E [s(X)− Eθ s(X)] = s(X)− E s(X).

Let t > 0 and θ ∈ Rp be arbitrary and fixed and define D∞(θ, t) to be the event that

||γθ(X,Y )− E γθ(X,Y )||∞ = ||s(X)− E s(X)||∞ ≥ t. By a union bound,

P(||s(X)− E s(X)||∞ ≥ t) = P
(

p⋃
l=1

[
|sl(X)− E sl(X)| ≥ t

])
≤

p∑
l=1

P (|sl(X)− E sl(X)| ≥ t) .

For each l ∈ {1, . . . , p}, define Dl(θ, t) to be the event |sl(X) − E sl(X)| ≥ t. Let ε > 0

and define E(ε) to be the event that |||Y ||1 − E||Y ||1| ≤ ε, i.e.,

E(ε) = {y ∈ Y : |||y||1 − E||Y ||1| ≤ ε} .

We assume that ε > 0 is chosen so that E(ε) is not empty, which implies P(E(ε)) > 0 as

g(y) is assumed to be strictly positive on Y. By the law of total probability,

P (D∞(θ, t)) = P (D∞(θ, t) |E(ε)) P (E(ε)) + P (D∞(θ, t) |E(ε)c) P (E(ε)c)

≤ P (D∞(θ, t) |E(ε)) + P (E(ε)c)

≤
p∑
l=1

P (Dl(θ, t) |E(ε)) + P (E(ε)c) .

(7)

5



Note that we have not necessarily guaranteed that P (E(ε)c) > 0. However, if P (E(ε)c) = 0

the non-conditional form of the law of total probability would yield the bound

P (D∞(θ, t)) ≤
p∑
l=1

P (Dl(θ, t) |E(ε)) ,

which is strictly sharper than the bound we give in (7). We will use a divide and con-

quer strategy to bound each probability in (7) in turn. The form of (1) implies, through

factorization principles, that the dyad-based vectors Xi,j ({i, j} ⊂ N) are conditionally

independent given Y [e.g., Maathuis et al., 2018, p. 11–13]. Hence, using Lemma 4, the

components of the sufficient statistic vector decompose into the sum

sl(X) =
∑
{i,j}⊂N

sl,i,j(Xi,j), l ∈ {1, . . . , p},

so that the components of s(X) are sums of bounded conditionally independent random

variables given Y . Using the forms for sl(X) and sl,i,j(Xi,j) outlined in Lemma 4, we have

0 ≤ sl,i,j(Xi,j) ≤ Yi,j P-almost surely, because sl,i,j(Xi,j) ∈ {0, 1} and sl,i,j(Xi,j) = 0 if

Yi,j = 0 P-almost surely. We may then apply Hoeffding’s inequality to obtain

P (Dl(θ, t) |Y = y) ≤ 2 exp

(
− 2 t2

||y||1

)
, (8)

where the denominator follows because
∑
{i,j}⊂N y2i,j = ||y||1. Using the law of total proba-

bility, we bound P (Dl(θ, t) |E(ε)) as follows:

P (Dl(θ, t) |E(ε)) =
∑
y∈Y

P (Dl(θ, t) ∩ [Y = y] |E(ε))

=
∑
y∈E(ε)

P (Dl(θ, t) ∩ [Y = y] |E(ε))

=
∑
y∈E(ε)

P (Dl(θ, t) | [Y = y] ∩ E(ε)) P(Y = y |E(ε))

=
∑
y∈E(ε)

P(Dl(θ, t) |Y = y)
P(Y = y)

P(E(ε))
,

(9)

6



noting that [Y = y] ∩ E(ε) = [Y = y] whenever y ∈ E(ε) and in the case when y 6∈ E(ε),

the intersection is empty, implying

P(Y = y |E(ε)) =
P([Y = y] ∩ E(ε))

P(E(ε))
=


P(Y = y)

P(E(ε))
y ∈ E(ε)

0 y 6∈ E(ε)

.

We now bound (9) using the bound in (8):∑
y∈E(ε)

P(Dl(θ, t) |Y = y)
P(Y = y)

P(E(ε))
≤

∑
y∈E(ε)

2 exp

(
− 2 t2

||y||1

)
P(Y = y)

P(E(ε))

≤ 2 exp

(
− 2 t2

E ||Y ||1 + ε

) ∑
y∈E(ε)

P(Y = y)

P(E(ε))

= 2 exp

(
− 2 t2

E ||Y ||1 + ε

)
,

showing

P (Dl(θ, t) |E(ε)) ≤ 2 exp

(
− 2 t2

E ||Y ||1 + ε

)
.

The replacement of ||y||1 by E||Y ||1 + ε follows because ||y||1 ≤ E||Y ||1 + ε for y ∈ E(ε),

resulting in the upper bound above. We bound the second term in the inequality (7) using

Chebyshev’s inequality:

P(E(ε)c) = P(|||Y ||1 − E ||Y ||1| > ε) ≤ P(|||Y ||1 − E ||Y ||1| ≥ ε) ≤ V(||Y ||1)
ε2

.

We bound the variance V(||Y ||1) as follows:

V(||Y ||1) =
∑
{i,j}⊂N

VYi,j + 2
∑

{i,j}≺{v,w}⊂N

C(Yi,j, Yv,w)

≤ E ||Y ||1 + 2
∑

{i,j}≺{v,w}⊂N

C(Yi,j, Yv,w),

noting Yi,j ∈ {0, 1} so that VYi,j = P(Yi,j = 1)P(Yi,j = 0) ≤ EYi,j. Hence,

P(E(ε)c) ≤
E ||Y ||1 + 2

∑
{i,j}≺{v,w}⊂N C(Yi,j, Yv,w)

ε2
=

E ||Y ||1 + 2 [Dg]
+

ε2
. (10)

Taking ε = E ||Y ||1 + 2 [Dg]
+ > 0 shows that P(E(ε)c) ≤ (E ||Y ||1)−1 and

P (Dl(θ, t) |E(ε)) ≤ 2 exp

(
− 2 t2

2(E ||Y ||1 + [Dg]+)

)
= 2 exp

(
− t2

E ||Y ||1 + [Dg]+

)
.

7



Combining all results shows that

P (||γθ(X,Y )− E γθ(X,Y )||∞ ≥ t) ≤ 2 exp

(
− t2

E ||Y ||1 + [Dg]+
+ log p

)
+

1

E||Y ||1
.

As a final matter, note that this choice of ε > 0 ensures E(ε) contains all y ∈ Y with

||y||1 ∈ [0, 2(E ||Y ||+ [Dg]
+)] as the empty graph is an element of Y with 0 edges.

�

We next prove a related result for gradients of log-pseudolikelihood functions of network

separable multilayer networks in Lemma 3. The proof of Lemma 3 essentially follows the

same proof of Lemma 2, and as a result we do not repeat key arguments, instead opting to

only outline the changes in the proof.

Lemma 3 Consider multilayer networks satisfying (1) which are defined on a set of N ≥ 3

nodes and K ≥ 1 layers. Define γ̃θ(x,y) := −∇θ ˜̀(θ;x,y), where ˜̀(θ;x,y) is the log-

pseudolikelihood function. Then, for all t > 0 and θ ∈ Rp,

P (||γ̃θ(X,Y )− E γ̃θ(X,Y )||∞ ≥ t) ≤ 2 exp

(
− t2

K2 (E ||Y ||1 + [Dg]+)
+ log p

)
+

1

E||Y ||1
.

Proof of Lemma 3. From (4), the log-pseudolikelihood function is given by

˜̀(θ;x,y) =
∑
{i,j}⊆N

K∑
k=1

log Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y).

By Lemma 5, Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y) is an exponential family with suffi-

cient statistic vector s : X 7→ Rp defined in Lemma 4 and natural parameter vector θ ∈ Rp.

Hence,

∇θ ˜̀(θ;x,y) =
∑
{i,j}⊆N

K∑
k=1

∇θ log Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y)

=
∑
{i,j}⊆N

K∑
k=1

[
s(x)− Eθ

[
s(X) |X−(k)i,j = x

(−k)
i,j ,Y = y

] ]
,

where X
−(k)
i,j denotes the (K-1)-dimensional vector of edge variables of dyad {i, j} in Xi,j

which excludes the single edge variable X
(k)
i,j , and by inserting the familiar form of the

8



score equation of an exponential family with respect to the natural parameter vector [e.g.,

Proposition 3.10, p. 32, Sundberg, 2019]. Note that Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y)

may not belong to a minimal exponential family. This presents no issues as we do not

require the conditional probability distributions of individual edge variables belong to a

minimal exponential family. Under the assumption that (X,Y ) follow (1), the vectors

Xi,j ({i, j} ⊂ N) are conditionally independent given Y (as discussed in the proof of

Lemma 2). Therefore, the lth component sl(X) decomposes into the sum of conditionally

independent Bernoulli random variables:

sl(X) =
∑
{i,j}⊂N

sl,i,j(Xi,j), l ∈ {1, . . . , p},

so that the components of s(X) are sums of bounded conditionally independent random

variables given Y . Thus,

∇θ ˜̀(θ;x,y) =
∑
{i,j}⊆N

K∑
k=1

(sl,i,j(Xi,j)− El,i,j(θ,xi,j,y)) ,

where

El,i,j(θ,xi,j,y) := Eθ
[
sl,i,j(Xi,j) |X(−k)

i,j = x
(−k)
i,j ,Y = y

]
.

Using the form of sl(X) and sl,i,j(Xi,j) outlined in Lemma 4, we have 0 ≤ sl,i,j(Xi,j) ≤ Yi,j

P-almost surely, because sl,i,j(Xi,j) ∈ {0, 1} and sl,i,j(Xi,j) = 0 if Yi,j = 0 P-almost surely.

This also implies 0 ≤ El,i,j(θ,xi,j,y) ≤ Yi,j P-almost surely. Taken together,

0 ≤

∣∣∣∣∣
K∑
k=1

(sl,i,j(Xi,j)− El,i,j(θ,xi,j,y))

∣∣∣∣∣ ≤
K∑
k=1

|sl,i,j(Xi,j)− El,i,j(θ,xi,j,y)| ≤ K Yi,j,

P-almost surely. From here, the remainder of the proof follows the proof of Lemma 2,

with the sole exception using the bound K Yi,j in the application of Hoeffding’s inequality.

Reiterating the proof of Lemma 2 with this change will yield

P (||γ̃θ(X,Y )− E γ̃θ(X,Y )||∞ ≥ t) ≤ 2 exp

(
− t2

K2 (E ||Y ||1 + [Dg]+)
+ log p

)
+

1

E||Y ||1
.

�
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C.1 Auxiliary results

Lemma 4 Consider multilayer networks satisfying (1) with maximum interaction term

H ≤ K and defined on a set of N ≥ 3 nodes and K ≥ 1 layers. Then the following hold:

1. The conditional probability mass function of X given Y is an exponential family:

Pθ(X = x | Y = y) ∝ h(x, y) exp (〈θ, s(x)〉) ,

where

h(x, y) =
∏
{i,j}⊂N

1(||xi,j||1 > 0)yi,j 1(||xi,j||1 = 0)1−yi,j ,

sufficient statistic vector s : X 7→ Rp and natural parameter vector θ ∈ Rp.

2. For each l ∈ {1, . . . , p}, there exists h ∈ {1, . . . , H} and {k1, . . . , kh} ⊆ {1, . . . , K}

such that the lth component of the sufficient statistic vector s(x) can be written as

sl(x) =
∑
{i,j}⊂N

sl,i,j(x) =
h∏
r=1

x
(kr)
i,j . (11)

3. The exponential family outlined above is both minimal, full, and regular.

Proof of Lemma 4. First, the form of the conditional probability distribution of X

given Y derived in Proposition 1 is given by

Pθ(X = x |Y = y) = exp (log f(x,θ) + log ψ(θ,y)) , (12)

provided h(x,y) = 1. The form of (1) suggests that (12) will be a minimal exponential

family in canonical form due to the form of the Markov random field specification for

f(θ,x) and the definition of ψ(θ,y). From the form of f(x,θ) in (1),

log f(x,θ) =
∑
{i,j}⊂N

(
K∑
k=1

θkx
(k)
i,j +

K∑
k<l

θk,lx
(k)
i,j x

(l)
i,j + . . .+

K∑
k1<...<kH

θk1,k2,...,kHx
(k1)
i,j · · ·x

(kH)
i,j

)
,

where H ≤ K is the highest order of cross-layer interactions included in the model. We

write θk1,k2,...,kh to reference the h-order interaction parameter for the interaction term

10



among layers {k1, . . . , kh} ⊆ {1, . . . , K}. As specified, ψ(θ,y) is the normalizing constant

for the exponential family. As such, the natural parameter space of the exponential family

is Rp as the support of X is finite, which implies ψ(θ,y) <∞ for all θ ∈ Rp and y ∈ Y. We

establish minimality by noting that the components of the parameter vector θ satisfy no

linear or affine constraints. Attached to each parameter θk1,...,kh ({k1, . . . , kh} ⊂ {1, . . . K},

h ∈ {1, . . . , H}) is the sufficient statistic

sk1,...,kh(x) =
∑
{i,j}⊂N

x
(k1)
i,j · · · x

(kh)
i,j .

Each statistic sk1,...,kh is a function of distinct, non-degenerate random variables, provided

||y||1 > 0, and so none of the statistics sk1,...,kh satisfy any linear or affine constraints. Hence,

(1) specifies a minimal and full exponential family with natural parameter space Rp of

dimension p =
∑H

h=1

(
K
h

)
and sufficient statistic vector s(x) with components sk1,...,kh(x)

({k1, . . . , kh} ⊆ {1, . . . , K}, h = 1, . . . , H). Regularity follows trivially [e.g., Proposition

3.7, pp. 28, Sundberg, 2019]. The form of (11) outlines this for a linear indexing of the

components of the sufficient statistic vector.

�

Lemma 5 Consider multilayer networks satisfying (1) with maximum interaction term

H ≤ K and defined on a set of N ≥ 3 nodes and K ≥ 1 layers. Then the conditional

probability mass function of X
(k)
i,j given Y = y and X

(−k)
i,j = x

(−k)
i,j is an exponential family

Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y) ∝ h(x, y) exp (〈θ, s(x)〉) ,

with sufficient statistic vector s : X 7→ Rp defined in Lemma 4, natural parameter vector

θ ∈ Rp, and

h(x, y) =
∏
{i,j}⊂N

1(||xi,j||1 > 0)yi,j 1(||xi,j||1 = 0)1−yi,j .

11



Proof of Lemma 5. First, note that the form of (1) and Proposition 1 suggests that

Pθ(X(k)
i,j = x

(k)
i,j |X

(−k)
i,j = x

(−k)
i,j ,Y = y)

=
h(x

(k)
i,j , x

(−k)
i,j , y) exp

(
〈θ, s(x

(k)
i,j , x

(−k)
i,j )〉

)
∑

x
(k)
i,j ∈{0,1}

h(x
(k)
i,j , x

(−k)
i,j , y) exp

(
〈θ, s(x

(k)
i,j , x

(−k)
i,j )〉

) (13)

is an exponential family in canonical form using the Markov random field specification

for f(θ,x) and the form of the conditional probability distribution of X
(k)
i,j given Y and

X
(−k)
i,j . However, this exponential family may not be full rank due to possible 0 values of

components of the given (K-1)-dimensional vector x
(−k)
i,j and thus may not be minimal.

�

D Proof of Theorem 1

Proof of Theorem 1. We first prove the theorem for maximum likelihood estimators,

and then discuss extensions and changes necessary to prove the result for maximum pseu-

dolikelihood estimators. By Proposition 1, observing X = x implies we observe Y = y, as

for each given x ∈ X, Y = y (P-a.s.) for one and only one y ∈ Y given by

yi,j = 1 (||xi,j||1 > 0) , {i, j} ⊂ N.

Denote the gradient of −`(θ;x,y) by

γθ(x,y) := −∇θ `(θ;x,y)

and the expected Hessian matrix of the negative log-likelihood by

H(θ) := −E∇2
θ `(θ;X,Y ).

Theorem 6.3.4 of Ortega and Rheinboldt [2000] states that if

(θ − θ?)> γθ(x,y) ≥ 0

12



for all θ ∈ ∂B2(θ
?, ε), where ∂B2(θ

?, ε) is the boundary of the set

B2(θ
?, ε) = {θ ∈ Rp : ||θ − θ?||2 < ε},

then γθ(x,y) has a root in B2(θ
?, ε) ∪ ∂B2(θ

?, ε), i.e., θ̂ exists and satisfies ||θ̂ − θ?||2 ≤ ε.

Note that a root of γθ(x,y) is also a root of −γθ(x,y); in what follows, we consider finding

a maximizer of `(θ;x,y) by finding a minimizer of −`(θ;x,y). The classification of roots as

maximizers/minimizers is justified from the fact that that `(θ;x,y) is concave in θ, a fact

which follows from Proposition 1, as g(y) is constant in θ and log Pθ(X = x |Y = y) is

the log-likelihood of a minimal, full, and regular exponential family with natural parameter

vector θ and thus is strictly concave in θ [Proposition 3.10, p. 32, Sundberg, 2019]. By

the multivariate mean-value theorem [Furi and Martelli, 1991, Theorem 5],

(θ − θ?)>E γθ(X,Y ) = (θ − θ?)>E γθ?(X,Y ) + (θ − θ?)>H(θ̇)(θ − θ?)

= (θ − θ?)>H(θ̇)(θ − θ?),

where θ̇ = tθ+(1−t)θ? (some t ∈ [0, 1]) and by invoking Lemma 2 of Stewart and Schwein-

berger [2021], which shows that both the expected log-likelihood and log-pseudolikelihood

of a minimal exponential family is uniquely maximized at the data-generating parameter

vector θ?, implying E γθ?(X,Y ) = 0. Let ε ∈ (0, ε?) and arbitrarily take θ ∈ ∂B2(θ
?, ε).

Then

(θ − θ?)>H(θ̇)(θ − θ?) =
(θ − θ?)>H(θ̇)(θ − θ?)

(θ − θ?)>(θ − θ?)
||θ − θ?||22 ≥ ε2 λmin(H(θ̇)),

since ||θ − θ?||2 = ε as θ ∈ ∂B2(θ
?, ε) and because the Rayleigh quotient of a matrix is

bounded below by the smallest eigenvalue of that matrix so that

(θ − θ?)>H(θ̇)(θ − θ?)
(θ − θ?)>(θ − θ?)

≥ λmin(H(θ̇)) ≥ inf
θ∈B2(θ?,ε?)

λmin(H(θ)),

where λmin(H(θ̇)) is the smallest eigenvalue of H(θ̇), noting that

||θ̇ − θ?||2 = ||tθ + (1− t)θ? − θ?||2 = t ||θ − θ?||2 ≤ ||θ − θ?||2 ≤ ε?,

13



since t ∈ [0, 1]. Lemma 1 showed that

λmin(H(θ)) = λmin(I(θ)) E ||Y ||1,

which in turn implies

inf
θ∈B2(θ?,ε?)

λmin(H(θ)) = ξε? E ||Y ||1,

where

ξε? := inf
θ∈B2(θ?,ε?)

λmin(I(θ)),

with I(θ) defined in Lemma 1. Hence, for θ ∈ ∂B2(θ
?, ε) (ε ∈ (0, ε?)),

(θ − θ?)>E γθ(X,Y ) ≥ ε2 ξε? E ||Y ||1.

We next turn to showing

P
(

inf
θ∈B2(θ?,ε)

(θ − θ?)> γθ(X,Y ) ≥ 0

)
≥ 1− 2 (E||Y ||1)−1,

by showing that the event

sup
θ∈B2(θ?,ε)

|(θ − θ?)> (E γθ(X,Y )− γθ(X,Y ))| < ε2 ξε? E ||Y ||1

occurs with probability at least 1−2 (E||Y ||1)−1, in turn implying that the event ||θ̂−θ?||2 ≤ ε

happens with probability at least 1−2 (E||Y ||1)−1. Applying the Cauchy-Schwarz inequality

and utilizing standard vector norm inequalities,

|(θ − θ?)> (E γθ(X,Y )− γθ(X,Y ))| ≤ ||θ − θ?||2 ||γθ(X,Y )− E γθ(X,Y )||2

≤ ε
√
p ||γθ(X,Y )− E γθ(X,Y )||∞,

noting θ ∈ ∂B2(θ
?, ε). It suffices to demonstrate, for all θ ∈ ∂B2(θ

?, ε), that

P
(
||γθ(X,Y )− E γθ(X,Y )||∞ < ε p−

1
2 ξε? E ||Y ||1

)
≥ 1− 2 (E||Y ||1)−1.

For ease of presentation, we define DN,ε,p to be the event

||γθ(X,Y )− E γθ(X,Y )||∞ ≥ ε p−
1
2 ξε? E ||Y ||1.

14



Applying Lemma 2,

P (DN,ε,p) ≤ 2 exp

(
− (ε ξε? E ||Y ||1)2

p (E ||Y ||1 + [Dg]+)
+ log p

)
+

1

E||Y ||1
,

where [Dg]
+ := max{0, Dg}, recalling

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j, Yv,w),

where {i, j} ≺ {v, w} implies the sum is taken with respect to the lexicographical ordering

of pairs of nodes. Under the assumption that E||Y ||1 ≥ 1,

2 exp

(
− ε2 ξ2ε? (E||Y ||1)2

p (E ||Y ||1 + [Dg]+)
+ log p

)
≤ 2 exp

(
− ε2 ξ2ε? E||Y ||1
p (1 + [Dg]+)

+ log p

)
.

Take

ε =

√
3 p logN

E||Y ||1

√
1 + [Dg]+

ξε?
.

If

lim
N→∞

√
3 p logN

E||Y ||1

√
1 + [Dg]+

ξε?
= 0,

then for N sufficiently large, we will have ε < ε?, which ensures ε? may be chosen indepen-

dent of N and p. While ε? can be chosen independent of N and p, note that p is expected

to be a function of N and thus ξε? will not (in general) be independent of N , possibly

holding implications for how fast p may grow with N for certain θ? and ε?. This choice of

ε in turn implies

2 exp

(
− ε2 ξ2ε? E||Y ||1
p (1 + [Dg]+)

+ log p

)
= 2 exp (−3 logN + log p) ≤ 2N−2,

under the assumption that p ≤ N , which ensures −3 logN + log p ≤ −2 logN . Note that

E||Y ||1 ≤
(
N
2

)
≤ N2. We have thus shown, for all θ ∈ ∂B2(θ

?, ε), that

P
(
||γθ(X,Y )− E γθ(X,Y )||∞ ≤ ε p−

1
2 ξε? E ||Y ||1

)
≥ 1− 3 (E ||Y ||1)−1,

under the above conditions. As a result, there exists N0 ≥ 3 such that, for all N ≥ N0 and

with probability at least 1− 3 (E ||Y ||1)−1, the set Θ̂ is non-empty and the unique element

15



of the set θ̂ ∈ Θ̂ satisfies (uniqueness following from minimality, as discussed in Section 3)

||θ̂ − θ?||2 ≤
√

3 p logN

E||Y ||1

√
1 + [Dg]+

ξε?
.

The above proof can be extended to maximum pseudolikelihood estimators by substituting

the relevant quantities (e.g., ξ̃ε? for ξε? , etc.). The one change of note is that instead of

applying the concentration inequality in Lemma 2, we apply the concentration inequality

in Lemma 3, which includes an additional factor of K2. Following these steps and repeating

the above proof will show that there exists N0 ≥ 3 such that, for all N ≥ N0 and with

probability at least 1− 3 (E ||Y ||1)−1, the set Θ̃ is non-empty and each θ̃ ∈ Θ̃ satisfies

||θ̃ − θ?||2 ≤

√
3 pK2 logN

E||Y ||1

√
1 + [Dg]+

ξ̃ε?
,

where

ξ̃ε? := inf
θ∈B2(θ?,ε?)

λmin(Ĩ(θ)).

�

E Proposition 2 and proof

In order to establish a bound on the error of the multivariate normal approximation for

estimators of data-generating parameters, we first establish an error bound on the multi-

variate normal approximation of a standardization of the sufficient statistic vector s(X)

of the exponential family distribution of X given Y , derived in Lemma 4, in Proposition

2 using a Lyapunov type bound presented in Raič [2019]. Proposition 2 provides the basis

for our normality proof for estimators which we presented in Theorem 2.

Proposition 2 Consider multilayer networks satisfying (1) defined on a set of N ≥ 3

nodes and K ≥ 1 layers. Denote by s(X) ∈ Rp the sufficient statistic vector of the

exponential family P(X = x |Y = y) as defined in Lemma 4. Let EY be the random
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conditional expectation operator for the distribution of X conditional on Y , and define

SN := (I(θ?) ||Y ||1)−1/2 (s(X)− EY s(X))

=
∑
{i,j}⊂N

(I(θ?) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)).

For any measurable convex set A ⊂ Rp,

|P(SN ∈ A)− Φ(Z ∈ A) | ≤ 83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
,

where Φ is the standard multivariate normal measure and Z ∼ MvtNorm(0p, Ip), where 0p

is the p-dimensional vector of zeros and Ip is the p× p identity matrix.

Before we prove Proposition 2, we introduce a Lyapunov type bound in Lemma 6

provided by Theorem 1 of Raic [Raič, 2019].

Lemma 6 Consider a sequence of n ≥ 1 independent random vectors Wi ∈ Rp. Assume

that EWi = 0p and
∑n

i=1 VWi = Ip where 0p is the p-dimensional vector of zeros and Ip

is the p× p identity matrix. Define

Sn =
n∑
i=1

Wi

and let Z be the standard multivariate normal variable, i.e., Z ∼ MvtNorm(0p, Ip). Then,

for all measurable convex sets A ⊂ Rp,

|P(Sn ∈ A)− Φ(Z ∈ A)| ≤ (42 p1/4 + 16)
n∑
i=1

E ||Wi||32,

where Φ is the standard multivariate normal measure.

We now turn to proving Proposition 2.

Proof of Proposition 2. By Proposition 1 and Lemma 4, the conditional distri-

bution of the multilayer network X given Y follows an exponential family with sufficient
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statistic vector that can be decomposed into the sum of conditionally independent dyad-

based statistics:

s(X) =
∑
{i,j}⊂N

si,j(X),

with the precise formula for si,j(X) given in Lemma 4. Define

SN := (I(θ?) ||Y ||1)−1/2 (s(X)− EY s(X))

=
∑
{i,j}⊂N

(I(θ?) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)),

where I(θ?) is the Fisher information matrix of a single dyad Xi,j for {i, j} ⊂ N satisfying

Yi,j = 1 (i.e., the subset of activated dyads) evaluated at θ? per Lemma 1 and where

EY is the random conditional expectation operator with respect to the distribution of X

conditional on Y . For ε > 0 satisfying ε < E ||Y ||1, define the event E(ε) by

E(ε) := {y ∈ Y : ||y||1 ≥ E||Y ||1 − ε} .

In words, E(ε) is the subset of configurations of the single-layer network Y which have

number of edges equal to at least the expected number of activated dyads E ||Y ||1 minus

ε > 0. The restrictions placed on ε ensure that E ||Y ||1− ε > 0 which implies that E(ε) will

not contain the empty graph which has no edges and that E(ε) will contain the complete

graph with
(
N
2

)
edges as E ||Y ||1 <

(
N
2

)
(strict inequality following from the fact that g(y),

the marginal probability mass function of Y , is assumed to be strictly positive on Y).

Hence, P(E(ε)) > 0 and P(E(ε)c) > 0. Let A ⊂ Rp be a measurable convex set. By the law

of total probability and the triangle inequality, we have

|P(SN ∈ A)− Φ(Z ∈ A) | ≤ |P(Sn ∈ A |E(ε))− Φ(Z ∈ A)| P(E(ε))

+ |P(Sn ∈ A |Ec(ε))− Φ(Z ∈ A)| P(Ec(ε))

≤ sup
y∈E(ε)

|P(SN ∈ A |Y = y)− Φ(Z ∈ A) | + P(Ec(ε)),

(14)
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noting |P(Sn ∈ A |Ec(ε))− Φ(Z ∈ A)| ≤ 1 and P(E(ε)) ≤ 1. Taking

Wi,j = (I(θ?) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)),

we have

E [Wi,j |Y = y] = 0,

a result of the tower property of conditional expectation, and

V
[∑

{i,j}⊂N Wi,j |Y = y
]

= Ip,

which follows from Lemma 1 which establishes that V[si,j(X) |Y = y] = I(θ?) when

Yi,j = 1, recalling the form of the Fisher information matrix of exponential families to

be the covariance matrix of the sufficient statistic vector [e.g., Proposition 3.10, pp. 32,

Sundberg, 2019], and due to the fact that V[si,j(X) |Y = y] = 0p,p when Yi,j = 0. Applying

Lemma 6 to the first term of the summation of (14), for any measurable convex set A ⊂ Rp,

|P(SN ∈ A |Y = y)− Φ(Z ∈ A)| ≤ (42 p1/4 + 16)
∑
{i,j}⊂N

E
[
||Wi,j||32 |Y = y

]
.

Given Y = y, using standard matrix and vector norm inequalities,

||Wi,j||2 = ||(I(θ?) ||y||1)−1/2 (si,j(X)− E si,j(X))||2

≤ ||y||−1/21 |||I(θ?)−1/2|||2 ||si,j(X)− E si,j(X)||2

≤ (||y||1 ξε?)−1/2 p1/2 yi,j,

where ||| · |||2 denotes the spectral norm of a p× p matrix and

ξε? := inf
θ∈B2(θ?,ε?)

λmin(I(θ)),

for a given and fixed ε? > 0, as defined in Section 3. From proofs of Lemma 2 and 3,

0 ≤ sl,i,j(x) ≤ 1, all l = 1, . . . , p, {i, j} ⊂ N,

19



P-almost surely. Hence,

P(||si,j(X)− EY si,j(X)||∞ ≤ yi,j |Y = y) = 1,

implying (conditional on Y = y)

||si,j(X)− EY si,j(X)||2 ≤ (p yi,j)
1/2 = p1/2 yi,j,

P-almost surely. As a result,

E [||Wi,j||32 |Y = y] ≤ (||y||1 ξε?)−3/2 p3/2 yi,j,

noting that y3i,j = yi,j ∈ {0, 1}. Using the fact that 42 p1/4 + 16 ≤ 58 p1/4 (p ≥ 1), we have

(42 p1/4 + 16)
∑
{i,j}⊂N

E
[
||Wi,j||32 |Y = y

]
≤ 58 p7/4

∑
{i,j}⊂N

yi,j (||y||1 ξε?)−3/2

= 58 p7/4 ||y||−1/21 ξ
−3/2
ε?

≤ 58 p7/4 (E ||Y ||1 − ε)−1/2 ξ−3/2ε? ,

as the conditioning event E(ε) and choice of ε ensure that ||y||1 ≥ E||Y ||1 − ε > 0. We

bound the second term in (14) by Chebyshev’s inequality using equation (10) in the proof

of Lemma 2:

P(Ec(ε)) ≤ E ||Y ||1 + 2 [Dg]
+

ε2
.

Taking ε = 2−1 E ||Y ||1 > 0, we have

P(Ec(ε)) ≤ 4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Combining terms, we obtain the bound

|P(SN ∈ A)− Φ(Z ∈ A)| ≤ 83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

�
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Note that the asymptotic multivariate normality can be established provided

lim
N→∞

[
83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

]
= 0,

resulting in following the asymptotic convergence in distribution:

SN
D−→ Z ∼ MvtNorm (0, Ip) .

F Proof of Theorem 2

Proof of Theorem 2. In order to demonstrate the feasibility of the normal approxi-

mation for maximum likelihood estimators θ̂ of θ?, we first start with a standard Taylor

expansion of the negative score equation:

−∇θ `(θ̂;x,y) = −∇θ `(θ?;x,y)−∇2
θ `(θ

?;x,y) (θ̂ − θ?)−R, (15)

where R ∈ Rp is the vector of remainders given in the Lagrange form. Denoting by Ri,

(θ̂ − θ?)i, and (∇θ `(θ;x,y))i the ith component of R, (θ̂ − θ?), and the score function

∇θ `(θ;x,y), respectively. The remainder term Ri (i = 1, . . . , p) is given by

Ri =

p∑
j=1

1

2

∂2 (∇θ `(θ̇i;x,y))i
∂ θ2j

(θ̂ − θ?)2j +
∑

1≤j<k≤p

∂2 (∇θ`(θ̇i;x,y))i
∂ θj ∂ θk

(θ̂ − θ?)j (θ̂ − θ?)k,

where θ̇i = ti θ̂ + (1− ti)θ? (for some ti ∈ [0, 1]). By Proposition 1,

`(θ;x,y) = log Pθ(X = x |Y = y) + log g(y).

By Lemma 4, the probability mass function Pθ(X = x |Y = y) belongs to a minimal ex-

ponential family with sufficient statistic vector s(x) = (s1(x), . . . , sp(x)) given by equation

(11) in Lemma 4. We then have,

−∇θ `(θ;x,y) = −(s(x)− Eyθ s(X))

−∇2
θ `(θ;x,y) = Vyθ s(X) = I(θ?) ||y||1,
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where Eyθ and Vyθ are the conditional expectation and variance operators, respectively, of the

conditional distribution of X given Y = y, and by using standard formulas for exponential

families [e.g., Proposition 3.8, pp. 29, Sundberg, 2019] and the results of Lemma 1. Note

∇θ `(θ̂;x,y) = 0, as the maximum likelihood estimator θ̂ solves the score equation by

definition. We re-arrange (15) and multiply both sides by (I(θ?) ||Y ||1)−1/2 to obtain

(I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− (I(θ?) ||Y ||1)−1/2R

= (I(θ?) ||Y ||1)−1/2 (s(X)− EY s(X)).

(16)

Define R̃ := (I(θ?) ||Y ||1)−1/2R. Let A ⊂ Rp be any measurable convex subset of Rp and

Z ∼ MvtNorm(0p, Ip). We are interested in bounding the quantity

∣∣∣P((I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− R̃ ∈ A)− Φ(Z ∈ A)
∣∣∣ .

Then from (16),

P
(

(I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− R̃ ∈ A
)

= P
(
(I(θ?) ||Y ||1)−1/2 (s(X)− EY s(X)) ∈ A

)
.

Applying Proposition 2, for all measurable convex sets A ⊆ Rp,

∣∣P ((I(θ?) ||Y ||1)−1/2 (s(X)− EY s(X)) ∈ A
)
− Φ(Z ∈ A)

∣∣
≤ 83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Hence, ∣∣∣P((I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− R̃ ∈ A)− Φ(Z ∈ A)
∣∣∣

≤ 83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

We lastly handle the term R̃ by showing that ||R̃||2 is small with high probability. We first

use standard vector/matrix norm inequalities to bound

||R̃||2 = ||(I(θ?) ||Y ||1)−1/2R||2 ≤
|||I(θ?)−1/2|||2√

||Y ||1
||R||2 ≤

||R||2√
ξε?||Y ||1

,
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noting that the spectral norm |||I(θ?)−1/2|||2 is equal to the largest eigenvalue of I(θ?)−1/2

which will be the reciprocal of the smallest eigenvalue of I(θ?)1/2, which is bounded below

by
√
ξε? . Using a standard result from the Taylor theorem for functions with multiple

variables, if for each i = 1, . . . , p, there exists constants Mi > 0 such that

sup
θ∈Rp : ||θ−θ?||1≤||θ̂−θ?||1

∣∣∣∣ ∂2(∇θ `(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ ≤ Mi, 1 ≤ j ≤ k ≤ p,

then the Lagrange remainder is bounded above by

Ri ≤
Mi

2
||θ̂ − θ?||21

on the set {θ ∈ Rp : ||θ− θ?||1 ≤ ||θ̂− θ?||2}. By Lemma 7, conditional on Y = y, we have,

for all i = 1, . . . , p, the bound Mi ≤ 2 ||y||1. Hence,

||R̃||2 ≤
1√

ξε? ||y||1

√√√√ p∑
i=1

R2
i ≤ 1√

ξε? ||y||1

√√√√ p∑
i=1

||y||21 ||θ̂ − θ?||41

≤ 1√
ξε? ||y||1

√
p ||y||21 ||θ̂ − θ?||41 ≤

√
p ||y||1 ||θ̂ − θ?||21√

ξε? ||y||1

≤
√
p
√
||y||1 p ||θ̂ − θ?||22√

ξε?
≤

p3/2
√
||y||1 ||θ̂ − θ?||22√

ξε?
.

(17)

By Chebyshev’s inequality—as in the proof of Lemma 2—we can establish that

P
(
|||Y ||1 − E ||Y ||1| >

1

2
E ||Y ||1

)
≤ 4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
, (18)

whereas Theorem 1 established there exists N0 ≥ 3 such that, for all N ≥ N0, the event

||θ̂ − θ?||2 ≤
√

3 p logN

E||Y ||1

√
1 + [Dg]+

ξε?
, (19)

occurs with probability at least 1− 3 (E ||Y ||1)−1. Define E1 to be the event

|||Y ||1 − E ||Y ||1| ≤
1

2
E ||Y ||1
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and E2 to be the event in (19), and define R to be the corresponding values of R̃ in the

event (X,Y ) ∈ E1 ∩ E2, under which we have the bound

||R̃||2 ≤
p3/2

√
||y||1√
ξε?

3 p logN

E||Y ||1
1 + [Dg]

+

ξ2ε?

=
3 p5/2

√
2E ||Y ||1 log N

E||Y ||1
1 + [Dg]

+

ξ2ε?

=
3
√

2 (1 + [Dg]
+)

ξ2ε?

p5/2 logN√
E ||Y ||1

.

(20)

combining the bounds in (17), (18), and (19) and using the fact that

||y||1 ≤ E ||Y ||1 +
1

2
E ||Y ||1 ≤ 2E ||Y ||1

in the event y ∈ E1. Moreover, a union bound shows that

P(R̃ 6∈ R) ≤ 7

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Hence,

P

(
||R̃||2 ≤

3
√

2 (1 + [Dg]
+)

ξ2ε?

p5/2 logN√
E ||Y ||1

)
≥ 1− 7

E ||Y ||1
− 8 [Dg]

+

(E ||Y ||1)2
. (21)

Taken together, we have shown under the assumptions of Theorem 1 that there exists

N0 ≥ 3 such that, for all N ≥ N0, the error of the multivariate normal approximation

∣∣∣P((I(θ?) ||Y ||1)1/2 (θ̂ − θ?)− R̃ ∈ A)− Φ(Z ∈ A)
∣∣∣

is bounded above by

83

ξ
3/2
ε?

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

where R̃ satisfies

P

(
||R̃||2 ≤

3
√

2 (1 + [Dg]
+)

ξ2ε?

p5/2 logN√
E ||Y ||1

)
≥ 1− 7

E ||Y ||1
− 8 [Dg]

+

(E ||Y ||1)2
.

�
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F.1 Auxiliary results for proof of Theorem 2

Lemma 7 Consider multilayer networks satisfying (1) defined on a set of N ≥ 3 nodes

and K ≥ 1 layers and denote by the log-likelihood function by `(θ;x,y). Then, for each

i = 1, . . . , p and ε > 0,

sup
θ∈Rp : ||θ−θ?||2≤ε

∣∣∣∣∂2 (∇θ `(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ ≤ 2 ||y||1,

where (∇θ `(θ;x,y))i is the ith component of the score function ∇θ `(θ;x,y).

Proof of Lemma 7. By Proposition 1, given the observation x of X (i.e., observation

of the event X = x), Y is predictable with unique value y ∈ Y given by the formula in

Proposition 1, and (x,y) is network concordant. Further, by Proposition 1

`(θ;x,y) = log Pθ(X = x | Y = y) + log g(y),

where log Pθ(X = x|Y = y) is the log-likelihood of a minimal, full, and regular exponential

family. Thus, the second order derivative of `(θ;x,y) with respect to the ith and jth

components of θ correspond to the variance (in the case i = j) or covariance (in the case of

i 6= j) of corresponding sufficient statistic(s) of the exponential family [e.g., Proposition 3.8,

p. 29, Sundberg, 2019], with sufficient statistics given in Lemma 4. For {i, j} ⊆ {1, . . . , p},

∂ (∇θ `(θ;x,y))i
∂ θj

=
∂2 `(θ;x,y)

∂ θi ∂ θj
= Cθ(si(X), sj(X) |Y = y),

and when i = j ∈ {1, . . . , p},

∂ (∇θ `(θ;x,y))i
∂ θi

=
∂2 `(θ;x,y)

∂ θ2i
= Vθ(si(X) |Y = y).

As a result, for {i, j} ⊆ {1, . . . , p} and k ∈ {1, . . . , p},∣∣∣∣ ∂2 (∇θ `(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Cθ(si(X), sj(X) |Y = y)

∂ θk

∣∣∣∣ ,
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and when i = j ∈ {1, . . . , p} and k ∈ {1, . . . , p},∣∣∣∣ ∂2 (∇θ `(θ;x,y))i
∂ θi ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Vθ(si(X) |Y = y)

∂ θk

∣∣∣∣ .
By Lemma 4 equation (11), conditional on Y = y, each sufficient statistic si(X) (i ∈

{1, . . . , p}) can be decomposed into the sum of conditionally independent statistics of each

dyad Xv,w, for {v, w} ⊆ N. We can then write

Cθ(si(X), sj(X) |Y = y) =
∑

{v,w}⊂N

Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y),

noting that by conditional independence Cθ(si,v,w(Xv,w), sj,r,t(Xr,t) |Y = y) = 0 whenever

{r, t} 6= {v, w}, and when i = j, we can write

Vθ(si(X) |Y = y) =
∑

{v,w}⊂N

Vθ(si,v,w(Xv,w) |Y = y),

again appealing to the conditional independence given Y of the random variables si,v,w(Xv,w)

({v, w} ⊂ N). As a result, for k ∈ {1, . . . , p}, it suffices to show that,∣∣∣∣ ∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ ≤ 2,

and ∣∣∣∣ ∂ Vθ(si,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ ≤ 1.

Recall that the sufficient statistic si,v,w(X) (i = 1, . . . , p) is defined in Lemma 4 by

si,v,w(Xv,w) =
h∏
t=1

X(kt)
v,w , {v, w} ⊂ N,

for some h ∈ {1, . . . , H} and {k1, . . . , kh} ⊆ {1, . . . , K}. Define the set Si,v,w of components

of the sufficient statistic vector sv,w(X) for {v, w} ⊂ N and i = 1, . . . , p by

Si,v,w :=

{
h′∏
t=1

X(lt)
v,w : {l1, . . . , lh′} ⊂ {k1, . . . , kh}, h′ < h

}
,

where h ∈ {1, . . . , H} and {k1, . . . , kh} ⊆ {1, . . . , K}. The set Si,v,w is the set of components

of the sufficient statistic vector sv,w(X) of dyad {v, w} ⊂ N that have a value of 1 when
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si,v,w(X) = 1. For the ease of notation, let ISi,v,w
be the set of dimension indices whose

corresponding components of the sufficient statistic vector sv,w(X) belong to the set Si,v,w:

ISi,v,w
:= {j ∈ {1, . . . , p} : sj,v,w(X) ∈ Si,v,w}.

Define the conditional expectation of si,v,w(X) given Y = y for any i ∈ {1, . . . , p} and

{v, w} ⊂ N by

Pi,v,w(θ;X,y) := Pθ (si,v,w(X) = 1 |Y = y).

For further notation simplicity, denote by Li the set of layer indices {k1, . . . , kh} ⊆ {1, . . . , K}

that define the ith component si,v,w(Xv,w) of the sufficient statistic vector sv,w(X) for any

{v, w} ⊂ N, j ∈ {1, . . . , p}, and some h ∈ {1, . . . , H}. We then define

X
(Li)
v,w :=

{
X

(k1)
v,w , . . . , X

(kh)
v,w

}
, X

(−Li)
v,w := Xv,w \X(Li)

v,w ,

and the corresponding sample space

X(Li)
v,w := {0, 1}h, X(−Li)

v,w := {0, 1}H−h,

for some h ∈ {1, . . . , H}. Then we can write

Pi,v,w(θ;X,y) = Pθ

(∏
l∈Li

X(l)
v,w = 1 |Y = y

)

=

∑
X(−Li)
v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈IcSi,v,w

θj sj,v,w(x)


∑
Xv,w

exp

(
p∑
j=1

θj sj,v,w(x)

) .

Let

Z(θ) :=
∑
Xv,w

exp

(
p∑
j=1

θj sj,v,w(x)

)
,
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and take the derivative of Pi,v,w(θ;x,y) with respect to θk for k = 1, . . . , p. We have

∂ Pi,v,w(θ;X,y)

∂ θk

≤

∑
X(−Li)
v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈IcSi,v,w

θj sj,v,w(x)

 (
Z(θ)− ∂ Z(θ)

∂ θk

)
Z(θ)2

=

∑
X(−Li)
v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈IcSi,v,w

θj sj,v,w(x)


∑

Xv,w

exp

(
p∑
j=1

θj sj,v,w(x)

)
(1− sk,v,w(x))


Z(θ)2

≤

∑
X(−Li)
v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈IcSi,v,w

θj sj,v,w(x)

 Z(θ)

Z(θ)2

≤ 1.

(22)

The first inequality is obtained because sk,v,w(x) ≤ 1, and the last inequality is due to the

fact that

∑
X(−Li)
v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈IcSi,v,w

θj sj,v,w(x)

 ≤
∑
Xv,w

exp

(
p∑
j=1

θj sj,v,w(x)

)
.

Now we turn to show the derivative of the conditional variance and covariance of the

sufficient statistics of each dyad are bounded. Given Y = y, for all {i} ⊂ {1, . . . , p},

si,v,w(X) are conditionally independent across {v, w} ⊆ N. Then we have

Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

= E [si,v,w(X) sj,v,w(X) |Y = y]− E [si,v,w(X) |Y = y]E [sj,v,w(X) |Y = y]

= Pθ (si,v,w(X) = 1, sj,v,w(X) = 1 |Y = y)− Pi,v,w(θ;X,y)Pj,v,w(θ;X,y)

= Pθ

 ∏
l∈Li∪Lj

X(l)
v,w = 1 |Y = y

− Pi,v,w(θ;X,y)Pj,v,w(θ;X,y).
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Using the inequality derived in (22) and suppressing the notation of {v, w} and (X,y) in

Pi,v,w(θ;X,y), the derivative of the covariance with respect to θk, k = 1, . . . , p is given by∣∣∣∣ ∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣

=

∂ Pθ

 ∏
l∈Li∪Lj

X(l)
v,w = 1 |Y = y


∂ θk

− ∂ Pi(θ)

∂ θk
Pj(θ)− Pi(θ)

∂ Pj(θ)

∂ θk

≤ 2.

Using the same inequality and notation in (22), the derivative of the variance of a Bernoulli

random variable si,v,w(X) is given by∣∣∣∣ ∂ Vθ(si,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ =

∣∣∣∣ (1− 2Pi(θ))
∂ Pi(θ)

∂ θk

∣∣∣∣ ≤ 1.

Finally, for {i, j} ⊆ {1, . . . , p} and k ∈ {1, . . . , p}, we obtain∣∣∣∣ ∂2 (∇θ `(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Cθ(si(X), sj(X) |Y = y)

∂ θk

∣∣∣∣
≤

∑
{v,w}⊂N

∣∣∣∣∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣
≤ 2 ||y||1

due to the fact that Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y) = 0 when Yv,w = 0 for {v, w} ⊂

N. Similarly, Vθ(si,v,w(Xi,v,w) |Y = y) = 0 when Yv,w = 0 for {v, w} ⊂ N, and when

i = j ∈ {1, . . . , p} and k ∈ {1, . . . , p}, we have∣∣∣∣ ∂2 (∇θ `(θ;x,y))i
∂ θi ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Vθ(si(X) |Y = y)

∂ θk

∣∣∣∣
≤ ||y||1.

�

G Additional simulation results

We present additional simulation results that enhance those contained in Section 5.
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Table 4: P-values of the Zhou-Shao’s test for multivariate normality of θ̃ for 6 model-

generating parameters (θ?1, θ?2, θ?3, θ?4, θ?5, θ?6) estimated from 250 network samples at size

1000 on four basis network structures. All p-values are larger than .1.

Basis network model θ?1 θ?2 θ?3 θ?4 θ?5 θ?6

Dense Bernoulli .138 .473 .053 .699 .587 .983

Sparse Bernoulli .554 .132 .232 .634 .904 .373

SBM .65 .891 .982 .975 .871 .674

LSM .859 .831 .5 .227 .613 .409

G.1 Normal approximation with different basis networks

The multivariate normality of θ̃ is tested by Zhou-Shao’s multivariate normal test [Zhou

and Shao, 2014], and the p-values are provided in tabel 4. Q-Q plots of θ̃ estimated from

6 different model-generating parameters with a dense Bernoulli basis network, a sparse

Bernoulli basis network, a stochastic block model (SBM) generated basis network, and

a latent space model (LSM) generated basis network are shown in Figure 6, 7, 8 and 9,

respectively.
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pval: 0.5556 pval: 0.3082 pval: 0.5395 pval: 0.2496 pval: 0.3278 pval: 0.3999

pval: 0.3723 pval: 0.3169 pval: 0.8897 pval: 0.7626 pval: 0.0812 pval: 0.8181

pval: 0.4733 pval: 0.6547 pval: 0.3731 pval: 0.4046 pval: 0.7636 pval: 0.651

pval: 0.7936 pval: 0.7363 pval: 0.8739 pval: 0.5261 pval: 0.4257 pval: 0.0263

pval: 0.5647 pval: 0.9647 pval: 0.2734 pval: 0.7357 pval: 0.5453 pval: 0.6029

pval: 0.4062 pval: 0.7046 pval: 0.4411 pval: 0.8176 pval: 0.7387 pval: 0.6041

Q-Q plots of each component of the MPLE (dense Bernoulli basis network)

Figure 6: Q-Q plots and p-values of six components of θ̃ estimated from 250 multilayer

network samples at size 1000 on the dense Bernoulli basis network for 6 model-generating

parameters on each row.

pval: 0.8169 pval: 0.7875 pval: 0.4645 pval: 0.5936 pval: 0.2668 pval: 0.325

pval: 0.959 pval: 0.0563 pval: 0.7538 pval: 0.2353 pval: 0.3841 pval: 0.6311

pval: 0.7361 pval: 0.9825 pval: 0.1513 pval: 0.7628 pval: 0.7382 pval: 0.5082

pval: 0.5855 pval: 0.9465 pval: 0.374 pval: 0.7076 pval: 0.3703 pval: 0.3959

pval: 0.2049 pval: 0.6863 pval: 0.1898 pval: 0.6606 pval: 0.9389 pval: 0.5986

pval: 0.4939 pval: 0.4967 pval: 0.5277 pval: 0.8994 pval: 0.3746 pval: 0.6405

Q-Q plots of each component of the MPLE (sparse Bernoulli basis network)

Figure 7: Q-Q plots and p-values of six components of θ̃ estimated from 250 multilayer

network samples at size 1000 on the sparse Bernoulli basis network for 6 model-generating

parameters on each row.

31



pval: 0.4025 pval: 0.4728 pval: 0.5469 pval: 0.4469 pval: 0.4584 pval: 0.6927

pval: 0.5483 pval: 0.8666 pval: 0.0978 pval: 0.2303 pval: 0.032 pval: 0.1081

pval: 0.7454 pval: 0.7709 pval: 0.5528 pval: 0.2467 pval: 0.9868 pval: 0.6189

pval: 0.8385 pval: 0.9773 pval: 0.5026 pval: 0.9379 pval: 0.723 pval: 0.8256

pval: 0.1547 pval: 0.5289 pval: 0.0688 pval: 0.2216 pval: 0.0451 pval: 0.0241

pval: 0.3032 pval: 0.2986 pval: 0.7119 pval: 0.2415 pval: 0.3245 pval: 0.7165

Q-Q plots of each component of the MPLE (SBM basis network)

Figure 8: Q-Q plots and p-values of six components of θ̃ estimated from 250 multilayer

network samples at size 1000 on the SBM generated basis network for 6 model-generating

parameters on each row.

pval: 0.2178 pval: 0.401 pval: 0.3466 pval: 0.1625 pval: 0.0889 pval: 0.25

pval: 0.8078 pval: 0.6708 pval: 0.4001 pval: 0.4827 pval: 0.602 pval: 0.6994

pval: 0.3151 pval: 0.4208 pval: 0.349 pval: 0.4168 pval: 0.8837 pval: 0.3354

pval: 0.1577 pval: 0.5475 pval: 0.0438 pval: 0.4513 pval: 0.5357 pval: 0.6009

pval: 0.3512 pval: 0.4952 pval: 0.4739 pval: 0.2753 pval: 0.7138 pval: 0.4255

pval: 0.1582 pval: 0.9784 pval: 0.9992 pval: 0.2428 pval: 0.1869 pval: 0.1167

Q-Q plots of each component of the MPLE (LSM basis network)

Figure 9: Q-Q plots and p-values of six components of θ̃ estimated from 250 multilayer

network samples at size 1000 on the LSM generated basis network for 6 model-generating

parameters on each row.
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Table 5: False discovery rates of four procedures for detecting non-zero effects of six

model-generating parameters (θ?1, θ?2, θ?3, θ?4, θ?5, θ?6) estimated from 250 multilayer network

samples at size 1000 on the sparse Bernoulli basis network. All FDRs are smaller than 0.05.

Procedure θ?1 θ?2 θ?3 θ?4 θ?5 θ?6

Bonferroni .002 .003 .003 .003 .003 .011

Benjamini-Hochberg .020 .011 .022 .022 .014 .017

Hochberg’s .009 .008 .012 .010 .010 .014

Holm’s .007 .008 .011 .009 .006 .014

G.2 Additional results on the false discovery rate

The false discovery rate (FDR) of the multiple testing correction procedures of Bonferroni,

Benjamini-Hochberg, Hochberg, and Holm to detect non-zero components of θ? at a family-

wise significance level of α = 0.05 with a sparse Bernoulli basis network, an SBM generated

basis network and an LSM generated basis network are provided in Table 5, 6 and 7,

respectively (recall that the third and the sixth component θ?1,3 and θ?3 of θ? are set to 0).
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Table 6: False discovery rates of four procedures for detecting non-zero effects of six

model-generating parameters (θ?1, θ?2, θ?3, θ?4, θ?5, θ?6) estimated from 250 multilayer network

samples at size 1000 on the SBM generated basis network. All FDRs are smaller than 0.05.

Procedure θ?1 θ?2 θ?3 θ?4 θ?5 θ?6

Bonferroni .002 .002 .003 .001 .001 .004

Benjamini-Hochberg .022 .013 .014 .015 .015 .018

Hochberg’s .009 .014 .01 .008 .011 .014

Holm’s .009 .013 .005 .009 .009 .011

Table 7: False discovery rates of four procedures for detecting non-zero effects of six

model-generating parameters (θ?1, θ?2, θ?3, θ?4, θ?5, θ?6) estimated from 250 multilayer network

samples at size 1000 on the LSM generated basis network. All FDRs are smaller than 0.05.

Procedure θ?1 θ?2 θ?3 θ?4 θ?5 θ?6

Bonferroni .004 .006 .000 .005 .003 .004

Benjamini-Hochberg .016 .013 .011 .015 .016 .017

Hochberg’s .009 .014 .009 .011 .010 .011

Holm’s .008 .014 .009 .011 .007 .010
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