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Abstract: We propose a novel class of separable multilayer network mod-
els to capture cross-layer dependencies in multilayer networks, enabling the
analysis of how interactions in one or more layers may influence interac-
tions in other layers. Our approach separates the network formation process
from the layer formation process, and is able to extend existing single-layer
network models to multilayer network models that accommodate cross-
layer dependence. We establish non-asymptotic and minimax-optimal error
bounds for maximum likelihood estimators and demonstrate the conver-
gence rate in scenarios of increasing parameter dimension. Additionally, we
establish non-asymptotic error bounds for multivariate normal approxima-
tions and propose a model selection method that controls the false discovery
rate. Simulation studies and an application to the Lazega lawyers network
show that our framework and method perform well in realistic settings.
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1. Introduction

Multilayer networks have become a recent focal point of research in the field of
statistical network analysis [e.g., 26, 9, 2, 24, 30, 11, 37, 19], arising in applica-
tions where a common set of elements in a population interact through multiple
modes or relationships with other elements in the population. A prototypical
example in the literature might be the Lazega law firm network [25], in which
attorneys are linked through various forms of interaction, such as advice seek-
ing, friendship, collaboration, etc., each of which would form a distinct layer
in the multilayer network [24]. In essence, a multilayer network is a composite
structure, where each layer captures a specific type of interaction or relationship
between the same set of elements.

Edges in one layer of the multilayer network may depend on edges in other
layers, creating what is known as cross-layer dependence. Understanding the
drivers of edge formation in multilayer networks requires learning the depen-
dence structures across these layers. A key challenge lies in the fact that the
cross-layer dependence can be highly varied and complex, and the development
of statistical models with theoretical guarantees for network data with depen-
dent edges is challenging. Current methodological frameworks for multilayer
networks can be broadly categorized into two main groups:
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1. Statistical models equipped with theoretical guarantees often rely on la-
tent variable constructions [e.g., 30, 2, 19]. These models typically assume
conditional independence of edges given the latent variables, following
standard practices within the field.

2. Statistical models that do not provide formal theoretical guarantees [e.g.,
9, 24]. Instead, these methods extend existing approaches by explicitly
allowing for edge dependencies, thereby relaxing the conditional indepen-
dence assumptions present in the first class of models.

In this work, we address a critical gap in the literature by introducing a separable
multilayer network modeling framework for multilayer networks. Our approach
not only accommodates dependent edges but also provides theoretical guaran-
tees for both estimation and inference without relying on any latent variables.
Specifically, we extend single-layer network models to the multilayer setting,
with a central focus on identifying and understanding cross-layer dependence
structures. A key advantage of our proposed framework is that we are able
to distinguish the network formation process from the layer formation process.
This allows us to create a wide range of novel multilayer network models de-
rived from established single-layer network models, such as exponential-family
random graph models, stochastic block models, and latent space models. By
employing Markov random field specifications, we develop adaptable and com-
prehensive models to capture cross-layer dependencies in multilayer networks.
As a result, our framework jointly models both network structures and cross-
layer dependence, thus enabling any single-layer network model to be extended
to the multilayer setting. Our main contributions in this work include:

1. Introducing a novel framework for modeling cross-layer dependence in
multilayer networks that synchronizes with current network models in the
literature.

2. Deriving non-asymptotic theoretical guarantees in scenarios where the
number of parameters tends to infinity, which establishes bounds on the:

(a) Statistical error of maximum likelihood estimators.

(b) Error of the multivariate normal approximation of estimators.

3. Elaborating a model selection algorithm which controls the false discovery
rate.

The rest of the paper is organized as follows. Section 2 introduces our mod-
eling framework and includes illustrative examples. The consistency and the
minimax optimal results are contained in Section 3. The multivariate normal
approximation theory is presented in Section 4. The results of simulation studies
are provided in Section 5, together with different testing procedures for model
selection which control the false discovery rate. An application of our developed
framework and methodology is given in Section 6, concluding with a discussion
presented in Section 7. The code and data to reproduce the simulations and
analyses can be found in our package online.1

1https://github.com/jiaheng-li/mlyrnetwork

https://github.com/jiaheng-li/mlyrnetwork
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2. Modeling cross-layer dependence in multilayer networks

A multilayer network can be represented as a sequence of 1 ≤ K < ∞ ran-
dom graphs X(1), . . . ,X(K) each defined on a common set of N ≥ 3 nodes,
which we take without loss to be the set N = {1, . . . , N}. We call the graphs
X(1), . . . ,X(K) the layers of the network, and represent the multilayer network
as the quantity X = (X(1), . . . ,X(K)).

Connections between pairs of nodes {i, j} ⊂ N in each layer k ∈ {1, . . . ,K}
are modeled by random variables

X
(k)
i,j =

{
1 nodes i and j are connected in layer k

0 otherwise
.

We refer to all connections of a pair of nodes {i, j} ⊂ N across the K layers

as a dyad which we denote by Xi,j = (X
(1)
i,j , . . . , X

(K)
i,j ) ∈ {0, 1}K . A multi-

layer network can be represented by a collection of dyads as X = (Xi,j){i,j}⊂N

alternatively.
For notational ease, we will consider undirected multilayer networks, which

imply that the network layers X(1), . . . ,X(K) are undirected random graphs;
extensions to directed multilayer networks or mixed multilayer networks with
both directed and undirected layers will typically be straightforward, involving
only notational adaptations in subscripts in most cases. We adopt the usual

conventions for undirected networks, i.e., we assume that X
(k)
i,j = X

(k)
j,i (all

{i, j} ⊂ N, 1 ≤ k ≤ K) and X
(k)
i,i = 0 (all i ∈ N, 1 ≤ k ≤ K). The sample

space of each layer X(k) is therefore the product space X(k) := {0, 1}(
N
2 ) (k =

1, . . . ,K), and the sample space X of X is the product space of the sample
spaces of the individual layers, i.e., X := X(1) × · · · ×X(K). The sample space of
dyad {i, j} ⊂ N is the product space Xi,j := {0, 1}K .

A challenge in the statistical modeling of network data lies in the fact that
networks have many distinguishing properties, including:

1. Sparsity. Many real-world networks are sparse, in the sense that the ex-
pected number of edges in the network grows at a rate slower than

(
N
2

)
.

The phenomena of network sparsity manifests in a variety of different ap-
plications, usually due to constraints, such as time or financial constraints,
which can limit the number of connections any node can maintain at a
given point in time [22, 8].

2. Node heterogeneity. Different actors in a social network will have differ-
ent properties, called node covariates, which can lead to different propensi-
ties to form edges. A key example is assortative and disassortative mixing
patterns in networks [31, 23], as well as differences in structural patterns
in the network [1, 27].

3. Edge dependence. In addition to node-based effects that give rise to het-
erogeneity in propensities for nodes to form edges, scientific and statisti-
cal evidence suggests edges are dependent in many applications [18, 13, 6],
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and modeling a single system of multiple binary random variables without
replication is a challenging statistical problem inherent to many statistical
network analysis applications.

Each of the above gives rise to distinct challenges for modeling network data and
performing statistical inference in statistical network analysis applications, and
it is not straightforward to construct models that due justice to each of these
and more. To address these challenges, a plethora of statistical models have
been proposed to model network data, which for single-layer networks have in-
cluded exponential-families of random graph models [e.g., 28, 36], stochastic
block models [e.g., 17], latent metric space models [e.g., 16], random dot prod-
uct graphs [e.g., 3], exchangeable random graph models [e.g., 10, 12], and more.
In this work, we build upon the many classes of single-layer network data mod-
els by introducing a separable multilayer network modeling framework. This
framework enables existing single-layer network models to be extended to the
multilayer setting and simultaneously enables learning cross-layer dependence
and interactions across different layers in the multilayer network.

2.1. Separable multilayer network models

Multilayer networks are subject to the same forces and phenomena as single layer
networks, as multiple modes of relation or interaction do not remove constraints
or properties of nodes which are fundamental to network data applications. The
same set of nodes is defined across all layers in a multilayer network, and be-
cause all layers share the same set of nodes, the dyadic connections among
these nodes fundamentally define the network formation process. By specifying
a single-layer network as the foundational structure reference, we can separate
the network formation process from the layer formation process. In doing so,
the single-layer network serves as the baseline for establishing dyadic relation-
ships that represent the relational structure across all layers of the multilayer
network. As a result, the network formation process determines which dyads
have the potential to form connections, i.e., which pair of nodes may exhibit
at least one edge in any of the layers. In contrast, The layer formation pro-
cess dictates the particular layers in which these connections appear. To learn
the effects of cross-layer dependence in multilayer networks, we propose the
class of separable multilayer network models, which extend the broad litera-
ture on single-layer network models into the multilayer realm. These models
can incorporate an arbitrary single-layer network structure as the foundational
baseline and ensures that the underlying single-layer network can be recovered
from observations of the multilayer network. We illustrate this approach and
its advantages through our proposed modeling framework. We specify probabil-
ity distributions on a double of networks (X,Y ), where Y will represent the
network formation process, which we will call the basis network, and X will

represent the realized multilayer network. We assume that Y ∈ Y := {0, 1}(
N
2 )

is an undirected, single-layer network defined on the set of nodes N where, for
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all {i, j} ⊂ N,

Yi,j =

{
1 nodes i and j are connected in the basis network

0 otherwise
,

making the usual conventions for undirected networks mentioned previously.
For (X,Y ), we consider semi-parametric families of probability distributions
F := {Pθ : θ ∈ Rp} which are absolutely continuous with respect to a σ-finite
measure ν defined on P(X × Y), where P(X × Y) is the power set of X × Y.
Typically, ν will be the counting measure. We say the probability mass function
Pθ ∈ F defines a separable multilayer network model if Pθ admits the form:

Pθ({(x,y)}) = f(x,θ) g(y) h(x,y) ψ(θ,y), (x,y) ∈ X× Y, (1)

where

• f : X× Rp 7→ (0, 1) is given by

f(x,θ) =
∏

{i,j}⊂N

exp

(
K∑

k=1

θk x
(k)
i,j +

K∑
k<l

θk,l x
(k)
i,j x

(l)
i,j + . . .

+

K∑
k1< ...<kH

θk1,k2,...,kH
x
(k1)
i,j · · · x(kH)

i,j

)
,

whereH ≤ K is the highest order of cross-layer interactions included in the
model. We write θk1,k2,...,kh

to reference the h-order interaction parameter
for the interaction term among layers {k1, . . . , kh} ⊆ {1, . . . ,K}.

• g : Y 7→ (0, 1) is the marginal probability mass function of Y and is
assumed to be strictly positive on Y.

• h : X× Y 7→ {0, 1} is given by

h(x,y) =
∏

{i,j}⊂N

1(||xi,j ||1 > 0)yi,j 1(||xi,j ||1 = 0)1−yi,j ,

where xi,j = (x
(1)
i,j , . . . , x

(K)
i,j ) ∈ Xi,j ({i, j} ⊂ N).

• ψ : Θ× Y 7→ (0,∞) is defined by

ψ(θ,y) =

[∑
x∈X

f(x,θ)h(x,y)

]−1

,

ensuring (1) will be a valid probability mass function for (X,Y ).

The notation Pθ({(x,y)}) is well-defined for each pair (x,y) ∈ X × Y, as
Pθ is a probability measure defined on P(X× Y). Frequently, we will write the
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Fig 1: Multilayer networks specified by three different basis network structures:
the latent space model (LSM), the exponential random graph model (ERGM),
and the stochastic block model (SBM).

probability expressions Pθ(X = x,Y = y) for the joint probability of {(x,y)},
and Pθ(X = x |Y = y) for the conditional probability of the event X = x
conditional on the event Y = y. We denote the data-generating parameter
vector by θ⋆ ∈ Rp, and the corresponding probability measure and expectation
operator by P ≡ Pθ⋆ and E ≡ Eθ⋆ , respectively.

The specification in equation (1) separates the network formation process
Y , specified by g(y), from the layer formation process, specified by f(x,θ).
The two are joined by the function h(x,y), which ensures ||xi,j ||1 = 0 whenever
Yi,j = 0 and ||xi,j ||1 > 0 whenever Yi,j = 1, as we allow edges between nodes
i ∈ N and j ∈ N in X if and only if Yi,j = 1. We call dyads {i, j} ⊂ N with
Yi,j = 1 activated dyads, and a pair (x,y) ∈ X × Y that satisfies h(x,y) = 1
is said to be a concordant pair. We will only focus on concordant pairs of mul-
tilayer networks since our modeling framework guarantees the recovery of the
basis network Y given an observation of X, a point that will be made clear
shortly in Proposition 1. The function ψ(θ,y) ensures the resulting product of
functions will be a valid probability mass function, and it has less of a direct
role in modeling the cross-layer dependence, essentially fulfilling the role of a
normalizing constant for the conditional probability distribution of X given Y ,
as derived in Proposition 1. Such specifications have the advantage of being able
to specify the network formation process separately from the process that pop-
ulates the layers of activated dyads, thus modeling the cross-layer dependence
conditional on Y . To illustrate the flexibility and generality of (1), observe that
g(y) is allowed to be any probability mass function for a single-layer network
Y (e.g., exponential-family random graph model, stochastic block model, latent
space model), provided g(y) > 0 for all y ∈ Y. To illustrate this point, Figure
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1 displays various multilayer networks with K = 3 layers where the basis net-
work is specified via three different models, demonstrating that our modeling
framework is capable of ensuring that the multilayer network respects structural
properties of the underlying basis network. We view our framework as semi-
parametric as g(y) need not assume a specific parametric form. Moreover, our
framework can be viewed as non-parametric when the maximal possible order
of interaction terms are included in (1), a point on which we further elaborate
later. An important feature of our framework lies in the fact that the choice of
the probability distribution for the network formation process does not directly
influence the estimation for the cross-layer dependence structure, i.e., the choice
of g(y) does not directly influence estimation for θ⋆. Proposition 1 demonstrates
this point in the case of likelihood-based inference.

Proposition 1 Let {Pθ : θ ∈ Rp} satisfy (1). Then the following hold:

1. For each x ∈ X, Y = y (Pθ-a.s.) for one and only one y ∈ Y.

2. Y is predictable via X, i.e., for each x ∈ X, Pθ(Y = y |X = x) = 1
where

yi,j = 1(||xi,j ||1 > 0), {i, j} ⊂ N.

3. For all (x,y) ∈ X× Y with h(x,y) = 1,

log Pθ(X = x,Y = y) = log Pθ(X = x | Y = y) + log g(y),

where Pθ(X = x |Y = y) belongs to a minimal exponential family with
natural parameter vector θ ∈ Rp and is given by

Pθ(X = x | Y = y) = exp(log f(x,θ) + logψ(θ,y)).

Proposition 1 establishes a few key facts for the inference of cross-layer de-
pendence structures in multilayer networks. First, we are able to observe Y
through X, as given any observation x ∈ X of the multilayer network X,
Pθ(Y = y |X = x) = 1 for one, and only one, y ∈ Y. In other words, through
the observation of x, we can infer with probability 1 the corresponding y due to
the form of (1). The significance of this result is that we do not need to treat the
basis network Y as a latent network, which would require additional statistical
and computational methodology to handle the latent missing network data. Sec-
ond, we see that the inference for θ⋆ is unaffected by the choice of g(y); although,
the statistical guarantees for estimators of θ⋆ will be indirectly influenced by
the choice of g(y), a point which we discuss in later sections. Moreover, the
above choice for f(x,θ) and the functional form of Pθ(X = x |Y = y) derived
in Proposition 1 establishes that log Pθ(X = x |Y = y) corresponds to the
log-likelihood of a minimal exponential family, accessing a broad literature of
statistical methodology and theory [e.g., 41]. We note that other specifications
for f(x,θ) are possible, but that Markov random field specifications provide a
powerful class of models for dependent data [e.g., 44], and in the case of the sat-
urated model with maximal interaction term H = K, it completely specifies all
possible probabilities of outcomes xi,j ∈ {0, 1}K , presenting a non-parametric
model class for multilayer networks.
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2.2. Example of a multilayer network with pairwise interactions

We illustrate cross-layer dependence among layers in our modeling framework by
considering a separable multilayer network model using the Markov random field
specification for f(x,θ) given in the previous section and maximal interaction
term H = 2:

f(x,θ) =
∏

{i,j}⊂N

exp

(
K∑

k=1

θk x
(k)
i,j +

K∑
k<l

θk,l x
(k)
i,j x

(l)
i,j

)
. (2)

The dimension of the parameter vector θ is dim(θ) = K +
(
K
2

)
, with K param-

eters governing the single-layer effects for the K layers and
(
K
2

)
combinations of

layers to form the pairwise interactions for the cross-layer dependence effects.

Define the (K-1)-dimensional vector X
(−k)
i,j := (X

(l)
i,j : l ∈ {1, . . . ,K}\{k}) to

be the vector of edge variables inXi,j which excludes the edge variableX
(k)
i,j , i.e.,

excluding the edge variable between nodes i and j in layer k. The conditional

log-odds of edge X
(k)
i,j takes the form:

log
P(X(k)

i,j = 1 |X(−k)
i,j = x

(−k)
i,j , Yi,j = 1)

P(X(k)
i,j = 0 |X(−k)

i,j = x
(−k)
i,j , Yi,j = 1)

=


θk +

K∑
l ̸=k

θk,l x
(l)
i,j , ||x(−k)

i,j ||1 > 0

+∞, ||x(−k)
i,j ||1 = 0

.

A primary advantage and motivation of using a parametric Markov random
field specification for f(x,θ) lies in the interpretability of the model. An effec-
tive approach to analyzing and understanding marginal network effects in such
specifications is to study conditional log-odds of edges under different condi-
tioning statements [e.g., 39]. By the form of h(x,y), when Yi,j = 1, we require
||xi,j ||1 > 0, meaning nodes i and j must have at least one connection in X. This

is seen through the log-odds formula above, where the log-odds of edge X
(k)
i,j is

equal to +∞ when ||x(−k)
i,j ||1 = 0. In contrast, when ||x(−k)

i,j ||1 > 0, the constraint

||xi,j ||1 > 0 is already satisfied, and the log-odds of edge X
(k)
i,j depends on the

layer specific parameter θk, as well as the pairwise interaction effects where edges
present in other layers l ∈ {1, . . . ,K} \ {k} can influence the likelihood of the

edge X
(k)
i,j depending on the signs and magnitudes of the pairwise interaction

parameters θk,l ({k, l} ⊆ {1, . . .K}).

3. Estimation of cross-layer dependence structure

For separable multilayer network models satisfying (1), Proposition 1 establishes
that the log-likelihood function takes the form

ℓ(θ;x,y) := log Pθ(X = x,Y = y)

= log Pθ(X = x |Y = y) + log g(y).
(3)
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Given an observation x ∈ X of the multilayer network X, and therefore an
observation y ∈ Y of Y by Proposition 1, we denote the set of maximum
likelihood estimators by

Θ̂ :=

{
θ ∈ Rp : ℓ(θ;x,y) = sup

θ′∈Rp

ℓ(θ′;x,y)

}
,

and reference individual elements of the set by θ̂ ∈ Θ̂. As Proposition 1 estab-
lishes log Pθ(X = x |Y = y) to be a minimal, and by construction regular,

exponential family, |Θ̂| ∈ {0, 1}, i.e., when the maximum likelihood estimator

exists, the set Θ̂ will contain a unique element when non-empty [Proposition
3.11, pp. 32–33, 41]. As seen from the forms of ℓ(θ;x,y) given above, the gradi-
ents and Hessians of the log-likelihood equations do not directly depend on g(y).
However, the following lemma shows how theoretical guarantees for estimators
of θ⋆ will be indirectly influenced by the choice of g(y).

Lemma 1. Consider a family {Pθ : θ ∈ Rp} of separable multilayer network
models satisfying (1) and an observation x ∈ X of X. Let (x,y) be the con-
cordant pair where y is given by Proposition 1. Define, for each pair of nodes
{i, j} ⊂ N,

Li,j(θ,xi,j ,y) := log Pθ(Xi,j = xi,j |Y = y).

Then there exists a p× p matrix I(θ) such that

E
[
−∇2

θLi,j(θ,Xi,j ,Y ) |Y = y
]

=

{
I(θ) Yi,j = 1

0p,p Yi,j = 0,

for all {i, j} ⊂ N, where 0p,p is the p× p matrix with all 0 entries, and

λmin(−E∇2
θ ℓ(θ;X,Y )) = λmin(I(θ))E ||Y ||1

λmax(−E∇2
θ ℓ(θ;X,Y )) = λmax(I(θ))E ||Y ||1,

where λmin(A) and λmax(A) are the smallest and the largest eigenvalue of matrix
A ∈ Rp×p, respectively.

In classical settings with independent and identically distributed observa-
tions, the expected negative Hessian of the log-likelihood function is the Fisher
information matrix and is expected to scale with the number of observations.
In such cases, standard matrix theory indicates that the smallest eigenvalue of
this expected negative Hessian matrix will scale with the sample size, provided
the smallest eigenvalue of the Fisher information matrix is bounded from below.
Lemma 1 extends this notion by establishing similar scaling behavior concerning
the expected number of activated dyads E ||Y ||1, proxying as an effective sample
size. Analogously, I(θ) can be seen as the Fisher information of the popula-
tion distribution governing individual activated dyads in Y , mirroring the role
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of Fisher information for population distributions in classical independent and
identically distributed scenarios.

Before we present our theoretical guarantees for maximum likelihood esti-
mators in Theorem 1, we define some notations and outline some regularity
assumptions for our theorem to follow. As we will show in Theorem 1, the
choice of g(y) influences the estimation error through the expected number of
edges in Y and through the covariances of edge variables in Y . Define

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j , Yv,w),

where {i, j} ≺ {v, w} implies the sum is taken with respect to the lexicographical
ordering of pairs of nodes. Define [Dg]

+ := max{0, Dg} to be the positive part
of Dg. Let ϵ > 0 be fixed independent of N and p, and denote the ϵ-ball of the
data-generating parameter θ⋆ by B2(θ

⋆, ϵ) = {θ ∈ Rp : ||θ⋆ − θ||2 ≤ ϵ}. Define

λ̃ϵmin := inf
θ∈B2(θ⋆,ϵ)

λmin(I(θ)) and λ̃⋆max := λmax(I(θ
⋆)),

where λmin(A) and λmax(A) are the smallest and the largest eigenvalue of ma-
trix A ∈ Rp×p, respectively.

Assumption 1. Assume there exists a C0 > 0 such that E ||Y ||1 ≥ 1 and

[Dg]
+

E ||Y ||1
≤ C0,

for all network sizes N .

Assumption 2. Assume the parameter dimension p satisfies

p ≤
√
λ̃⋆max E ||Y ||1,

for all network sizes N .

Assumption 3. Assume that λ̃⋆max and λ̃ϵmin satisfy, as a function of the net-
work size N , √

λ̃⋆max

λ̃ϵmin

= o

(√
E||Y ||1
p

)
.

Assumptions 1–3 provide a foundation for Theorem 1 to establish the con-
sistency result of the maximum likelihood estimator in large network settings.
Assumption 1 imposes a lower bound on the expected number of activated dyads
relative to the covariance as the network size N grows. Assumption 2 restricts
the growth rate of p in relation to the network size and the largest eigenvalue
of the Fisher information I(θ⋆). Finally, Assumption 3 sets a constraint on the

ratio between

√
λ̃⋆max and λ̃ϵmin, balancing eigenvalue magnitudes in a way that

preserves estimator consistency under increasing network size.
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Theorem 1. Consider a multilayer network model following the form of equa-
tion (1) and is defined on a set of N ≥ 3 nodes. If Assumptions 1, 2, and 3 are
satisfied, there exists N0 ≥ 3 such that, for all N ≥ N0, with probability at least
1 − exp (−2 p) − (E ||Y ||1)−1, the set Θ̂ is non-empty and the unique element

θ̂ ∈ Θ̂ satisfies

||θ̂ − θ⋆||2 ≤ C

√
λ̃⋆max

λ̃ϵmin

√
p

E||Y ||1
, (4)

where C > 0 is a constant independent of N and p.

The results of Theorem 1 establish a few key facts concerning statistical
estimation of the data-generating parameter vector θ⋆. First, we can view the

quantity λ̃ϵmin

√
E ||Y ||1 / λ̃⋆max as the effective sample size in order to compare

our results to classical settings with independent and identically distributed
data. The effective sample size, together with the dimension of the model p, helps
to determine the rate of convergence (with respect to the Euclidean distance) of
maximum likelihood estimators. As previously mentioned, the quantity E||Y ||1
is determined by properties of g(y), the marginal probability mass function
of Y . While the specification of g(y) does not directly influence the estimation
algorithm, the statistical guarantees of estimators will depend on g(y) producing
enough activated dyads and not possessing overly strong dependence among
edges in the single-layer basis network Y (Assumption 1). The requirement
(Assumption 3) that the right-hand side of the bounds in Theorem 1 tends to 0
as N → ∞ ensures that all regularity assumptions remain valid. Namely, key to
our approach lies in the ability to control minimum eigenvalues of matrices I(θ)
in a neighborhood of the data-generating parameter vector θ⋆. The condition
that the bounds tend to 0 ensures that it is sufficient to control the smallest
eigenvalue in a bounded set, i.e., we may let ϵ be fixed independent of N and
p, and moreover, to ensure consistency in the sense that ||θ̂ − θ⋆||2 → 0 with
probability approaching 1 as N, p→ ∞.

Corollary 1. Under the assumptions of Theorem 1, and in the case that the
parameter dimension p is fixed, there exists N0 ≥ 3 such that, for all N ≥ N0

and αN ∈ (2 (E||Y ||1)−1 , 1/2), with probability at least 1 − αN , the set Θ̂ is

non-empty and the unique element θ̂ ∈ Θ̂ satisfies

||θ̂ − θ⋆||2 ≤ C
∣∣∣ log (αN

2

) ∣∣∣
√
λ̃⋆max

λ̃ϵmin

√
1

E||Y ||1
,

where C > 0 is a constant independent of N .

The corollary builds on the consistency result established in Theorem 1 by
providing a similar bound in the situation that the parameter dimension p re-
mains fixed. This simplifies the convergence rate by removing the dependence
of p in the error term, which can yield sharper asymptotic guarantees. The
introduction of the probability bound αN offers an explicit control over the con-
fidence level for the estimate’s accuracy, which improves interpretability and
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practical applicability in finite samples. The bound on ||θ̂ − θ⋆||2 in Corollary 1
now depends logarithmically on αN , introducing a trade-off between the confi-
dence level and the convergence rate. While the key dependencies remain on the

effective sample size λ̃ϵmin

√
E ||Y ||1 / λ̃⋆max as in Theorem 1, Corollary 1 provides

a useful refinement of the consistency result when the model’s dimensionality is
constrained.

We next present that the upper bound in Theorem 1 is minimax optimal up
to a constant. Define the minimax risk to be

RN := inf
θ̂

sup
θ∈Rp

Eθ ||θ̂ − θ||2,

and
λ̃ϵmax := sup

θ∈B2(θ⋆,ϵ)

λmax (I(θ)),

where λmax(A) is the largest eigenvalue of matrix A ∈ Rp×p.

Theorem 2. Consider a separable multilayer network model following the form
of equation (1) and is defined on a set of N ≥ 3 nodes. If Assumptions 1, 2 and
3 are satisfied, there exists a constant C > 0 independent of N and p, such that,
the lower bound of the minimax risk RN satisfies

RN ≥ C
λ̃ϵmin

λ̃ϵmax

√
λ̃⋆max

λ̃ϵmin

√
p

E ||Y ||1
.

Theorem 2 establishes a lower bound for the minimax risk RN , differing
from the upper bound of the ℓ2-error for the maximum likelihood estimator
in Theorem 1 by a factor of λ̃ϵmin / λ̃

ϵ
max. Building on this result, we establish

conditions for the minimax optimality of the maximum likelihood estimators in
Corollary 2.

Corollary 2. Under the assumptions of Theorem 2 and the assumption that

λ̃ϵmax = O
(
λ̃ϵmin

)
, (5)

the maximum likelihood estimator θ̂ achieves the minimax rate of convergence,
in the sense that the upper bound on the ℓ2-error of θ̂ given in Theorem 1
matches the lower bound of the minimax risk RN in Theorem 2, up to a constant.

The condition in (5) ensures that the rate of convergence for the maximum
likelihood estimator achieves the minimax optimality by imposing a more direct
and stringent relationship between the minimum and maximum eigenvalues than
that required by Assumption 3. The control on the minimum and maximum
eigenvalues for high-dimensional graphical models are common [e.g., 35, 45,
34], ensuring that the minimum and maximum eigenvalues of the information
matrices within a neighborhood of the data-generating parameter are bounded
away from 0 and bounded from above, respectively, and do not diverge relative
to one another.
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4. Error of the normal approximation and model selection

In this section, we establish the asymptotic multivariate normality of the max-
imum likelihood estimator (MLE) for the data-generating parameter vector θ⋆

as its dimension grows. Specifically, we derive a non-asymptotic bound on the
quality of the multivariate normal approximation and exhibit scaling condi-
tions on both the model dimension p and the expected number of activated
dyads E ||Y ||1—under which the approximation error vanishes as the network
size tends to infinity. Based on this result, we present a model selection method
using multiple hypothesis testing procedures that control the false discovery
rate. The main result is presented in Theorem 3, the proof of which is based on
a Taylor expansion of the log-likelihood function and through the application of
a Lyapunov type bound presented in Raič [33].

In the following, Z will denote a standard multivariate normal random vector,
i.e., with mean vector equal to the zero vector and covariance matrix equal to
the identity matrix (each of appropriate dimension), and Φ will denote the
corresponding probability measure.

Theorem 3. Consider a separable multilayer network model following the form
of equation (1) and is defined on a set of N ≥ 3 nodes. There exists N0 ≥ 3
such that, for all N ≥ N0 and any measurable convex set A ⊆ Rp, the error of
the multivariate normal approximation∣∣∣P((I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)−∆ ∈ A)− Φ(Z ∈ A)

∣∣∣
is bounded above by

83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

and ∆ satisfies

P

(
||∆||2 ≤

√
2C2 p5/2√
E||Y ||1

λ̃⋆max

(λ̃ϵmin)
5/2

)
≥ 1− exp (−2 p) − 5 + 8C0

E ||Y ||1
,

where C > 0 is the constant given in Theorem 1 and C0 > 0 is the constant
given in Assumption 1, both independent of N and p.

Theorem 3 serves as a foundation for establishing the asymptotic normality
of the maximum likelihood estimator θ̂. If

lim
N→∞

[
83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

]
= 0,

Theorem 3 implies (I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆) − ∆ will converge in distribution
to a standard multivariate normal random vector, as the error bound on the
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multivariate normal approximation will vanish in this case. The term ∆ can
be viewed as an error term, resulting from the fact that the normal approxi-
mation in Theorem 3 is obtained via a multivariate Taylor approximation in
order to bridge the distributional gap between key statistics which admit forms
amenable to existing theorems for the normal approximation and the parameter
vectors of interest, thus introducing an additional source of error in the normal
approximation.

While involved, the above condition for asymptotic multivariate normality
essentially places restrictions on the dependence induced through the single-layer
basis network Y measured by [Dg]

+, as well as the smallest eigenvalue of the
dyad-based information matrix I(θ) in a neighborhood of the data-generating

parameter vector θ⋆ as measured by λ̃ϵmin, and the model dimension p. As a

result, if the information matrix I(θ) is nearly singular at θ⋆, in which case λ̃ϵmin

will be small, the error of the normal approximation will be uniformly larger
(all else equal). Likewise, if the edge dependence in Y is large as measured by
[Dg]

+, we may not have sufficient activated dyads to ensure the error bound is
small, as ||Y ||1 may not be tightly concentrated around E ||Y ||1. The dependence
of the error approximation on the dimension of the random vector is a known
challenge in establishing multivariate normality [e.g., 33]. All quantities which
are not explicit constants can increase or decrease with N , with the rates of
these increases or decreases having implications for the rate of convergence in
distribution. Theorem 3 demonstrates that the allowable scaling for most of
quantities is with respect to the expected number of activated dyads E ||Y ||1.

We further examine Theorem 3 through an example where Y is a Bernoulli
random graph model, which assumes edge variables are independent Bernoulli
random variables with probability π ∈ (0, 1). Under this model, [Dg]

+ = 0 owing

to the independence of edge variables and E||Y ||1 = π
(
N
2

)
. Under this scenario,

we can show that∣∣∣P((I(θ⋆) ||Y ||1)1/2(θ̂ − θ⋆)−∆ ∈ A)− Φ(Z ∈ A)
∣∣∣

is bounded above by
166√

π (λ̃ϵmin)
3

p1.75

N
+

16

πN2
,

with the additional bound

P

||∆||2 ≤
√
2C2 p2.5√
π
(
N
2

) λ̃⋆max

(λ̃ϵmin)
2.5

 ≥ 1− exp (−2 p) − 5 + 8C0

π
(
N
2

) ,

where C > 0 is the constant given in Theorem 1 and C0 > 0 is the constant given
in Assumption 1, both independent of N and p. If λ̃ϵmin and π are both bounded
away from 0, then the error of the normal approximation will convergence to
0 provided (p2.5 λ̃⋆max) /N → 0 as N → ∞, which is sufficient to ensure ||∆||2
converges in probability to 0. Under the fully saturated model specification for
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(1) (H = K), the Binomial theorem shows that p = 2K − 1 ≤ 2K . Hence, the
dimension restriction on p in turn implies a restriction on the allowable rate
of growth of the number of layers K with N , where a sufficient condition for
(p2.5 λ̃⋆max) /N → 0 is for K ≤ .5 logN . In other words, the number of layers K
can grow at most logarithmically with N in the fully saturated model. In cases
when the number of interaction terms included in the cross-layer dependence
probability model is fixed, K may admit a sublinear scaling with N .

4.1. Model selection via univariate testing with FDR control

We outline a procedure for model selection that controls the false discovery rate,
leveraging the results of Theorems 1 and 3. Hotelling’s T -squared statistic can
be used to conduct a global test for H0 : θ⋆ = µ versus H1 : θ⋆ ̸= µ, where
µ ∈ Rp is the value of θ we want to test. We will mostly be interested in the case
when µ = 0p, i.e., the zero vector of dimension p. If the global test is rejected, or
is not of interest, we can perform model selection by leveraging the multivariate
normal approximation to obtain univariate normal approximation results for
the components of θ̂ and proceed to test each component: Hi,0 : θ⋆i = µi versus
Hi,1 : θ⋆i ̸= µi, for i = 1, . . . p and µi ∈ R. In general, µi = 0 will allow us

to test whether the estimated effect θ̂i is present in the model (i.e., whether
θ⋆i ̸= 0). One challenge in this approach lies in the fact that the model selection
procedure is sensitive to multiple testing error.

To ensure a more reliable procedure for identifying cross-layer dependence
effects in multilayer networks while mitigating the risk of spurious discoveries,
we elaborate a model selection algorithm that employs suitable multiple testing
adjustments to control the false discovery rate. We provide simulation examples
of four different univariate testing procedures including Bonferroni, Benjamini-
Hochberg, Hochberg, and Holm procedures in Section 5.2. In simulation studies,
all four univariate testing procedures exhibit strong statistical power for detect-
ing non-zero parameters, while controlling the false discovery rate at a preset
family-wise significance level.

5. Simulation studies

Directly simulating maximum likelihood estimators for network data with de-
pendent edges is challenging because the normalizing constants are often com-
putationally intractable. Computing the normalizing constant requires enumer-

ating all 2(
N
2 ) possible edge combinations for each layer to maximize the true

likelihood function. Additionally, dependencies among network dyads prevent
factorization of the likelihood, which further complicates direct maximization.
As a result, direct maximization of likelihood functions is generally infeasible in
these cases. Two predominant methods of approximating the maximum likeli-
hood estimator θ⋆ when the likelihood function is computationally intractable
have emerged in the literature. Monte Carlo maximum likelihood estimation
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(MCMLE) [15], which constructs a simulation-based approximation to the like-
lihood function in order to approximate the maximum likelihood estimator, is
an established method for approximating maximum likelihood estimators in the
statistical network analysis literature [21]. While able to provide accurate es-
timates of maximum likelihood estimators for complex models [e.g., 39, 36],
a drawback of MCMLE, and other simulation-based estimation methodology,
is the computational burden which can scale with both the complexity of the
model and the size of the network [5]. In settings where the computation of
the MCMLE is impractical, a computationally efficient alternative is provided
via the maximum pseudolikelihood estimator (MPLE) [4], whose application to
social network analysis and to statistical network analysis dates back to Strauss
and Ikeda [40]. Pseudolikelihood-based estimators have the following computa-
tional advantages:

1. Algorithms are generally deterministic and do not require simulation-
based approximation schemes, which aids in reproducibility of results;

2. Algorithms are generally more scalable, relative to alternatives such as
MCMLE and other simulation-based approximations, and are able to be
parallelized to take advantage of larger multicore computing infrastruc-
tures which are becoming increasingly common.

In this simulation, we consider the maximum pseudolikelihood estimator, de-
noted by θ̃. We conduct simulation studies to investigate the performance of the
maximum pseudolikelihood estimator θ̃ (MPLE), supplementing the theoretical
results established in Sections 3 and 4 for maximum likelihood estimators. As
will be discussed later in Section 6, we successfully reproduced the sufficient
statistics using the MPLE in the application, suggesting that the MPLE for the
multilayer network model solves a score equation similar to that of the MLE.
This indicates that the MPLE serves as a close approximation and can be a
good proxy for the MLE. In section 5.1, we demonstrate the consistency results
of Theorem 1 in settings of different data-generating parameters and increasing
model dimensions. We conduct simulation studies of the multivariate normal
approximation established by Theorem 3 in Section 5.2. Lastly, we discuss sev-
eral testing procedures for selecting non-zero effects while controlling the false
discovery rate (FDR) at a given family-wise significance level α.

In all simulation studies, we sample concordant multilayer networks (X,Y )
from (1) with the maximum order of corss-layer interaction H = 2:

f(x,θ) =
∏

{i,j}⊂N

exp

(
K∑

k=1

θk x
(k)
i,j +

K∑
k<l

θk,l x
(k)
i,j x

(l)
i,j

)
. (6)

Unless otherwise specified, the basis network Y is generated from the Bernoulli
random graph model.
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Fig 2: The relative ℓ2-errors between θ̃ and θ⋆ decrease as the number of ac-
tivated dyads increases. Each box is created by 250 replicates of multilayer
networks.

5.1. Consistency

The consistency is demonstrated through the decay of the relative ℓ2-errors
between θ̃ and the data-generating parameter θ⋆ as the expected number of
activated dyads E||Y ||1 increases. We generated M = 250 multilayer networks
with N = 300 nodes, usingM different data-generating parameters. We created
these networks for each of ten evenly spaced numbers of activated dyads increas-
ing from 3000 to 30000, and for four different numbers of layers increasing from
K = 3 to 6. The model dimension increases from 6 to 21 as K increases from
3 to 6. For each number of activated dyads, number of layers K, and replicate,
we sample a multilayer network X from (1) using the specification in (6) with
the data-generating parameter vector θ⋆ populated by randomly selecting each
component from the uniform distribution on (−1, 1). We make the exception
that components θ⋆3 and θ⋆1,3 are set to 0. In each replicate, we compute the
maximum pseudolikelihood estimator. The results of this simulation study are
given in Figure 2, which shows the decay of the relative ℓ2-errors between θ̃ and
θ⋆ as the number of activated dyads increases in networks with different number
of layers. The broad selection of data-generating parameter values on networks
with increasing number of layers verifies that Theorem 1 holds in many practical
settings with increasing model dimensions.

5.2. Multivariate normality and model selection

As stated in Section 4 and Theorem 3, the distribution of the maximum likeli-
hood estimator θ̂ converges in distribution to a multivariate normal distribution
asymptotically. In order to study the quality of the normal approximation—
especially for univariate testing which would be used for the false discovery rate
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Fig 3: Q-Q plots and p-values of six components of θ̃ estimated from 250 mul-
tilayer network samples at size 1000 on the dense Bernoulli basis network.

Table 1
False discovery rates of four procedures for detecting non-zero effects of 6 data-generating
parameters (θ⋆

1 , θ
⋆
2 , θ

⋆
3 , θ

⋆
4 , θ

⋆
5 , θ

⋆
6) estimated from 250 multilayer network samples at size

1000 on the dense Bernoulli basis network. All FDRs are smaller than .05.

Procedure θ⋆
1 θ⋆

2 θ⋆
3 θ⋆

4 θ⋆
5 θ⋆

6
Bonferroni .004 .002 .001 .002 .001 .005
Benjamini-Hochberg .014 .014 .014 .011 .017 .020
Hochberg .012 .008 .009 .008 .011 .016
Holm .010 .008 .006 .008 .007 .013

control and model selection—we randomly select 6 of the 250 data-generating
parameter vectors θ⋆ used to study the consistency results of Theorem 1 in the
simulation study conducted in Section 5.1. We then generate 250 replicates of
multilayer network samples by each of these 6 parameter vectors, using specifi-
cation (6) on four basis network structures with the number of layers K = 3: the
Bernoulli random graph model (dense and sparse), the stochastic block model,
and the latent space model.

The multivariate normality of θ̃ passed Zhou-Shao’s multivariate normal test
[46], with p-values provided in the Appendix H.1 in the supplement to this

paper. We visualize the marginal normality of individual component in θ̃ with
a dense Bernoulli basis network in Figure 3, through Q-Q plots of the simulated
maximum pseudolikelihood estimators. Univariate tests for normality failed to
reject the null hypothesis that each component of θ̃ is marginally normal at a
significance level of .05. Additional results studying the multivariate normality
of θ̃ on different basis network structures are provided in Appendix H.1 in the
supplement to this paper.

We then implement the multiple testing correction procedures of Bonferroni,
Benjamini-Hochberg, Hochberg, and Holm, for the 6 selected data-generating
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Table 2
Summary of Lazega’s corporate law partnership data with 71 lawyers (nodes).

Average Node Degree Number of Edges
Co-Worker Layer 11 378
Advice Layer 5 175
Friendship Layer 5 176

parameter vectors θ⋆ with 250 replicates to detect components that are signif-
icantly different from 0 while controlling the false discovery rate (FDR) at a
family-wise significance level of α = .05—recall that θ⋆1,3 and θ⋆3 of θ⋆ are set
to 0 in each simulation replicate. We estimate the FDR of the four procedures
by averaging the false discovery proportions from 250 replicates of each of the
6 randomly selected data-generating parameters θ⋆. We provide the estimated
FDRs for θ⋆ on a dense Bernoulli basis network in Table 1. In addition, we
show the receiver operating characteristic (ROC) curves for θ̃ estimating the
6 selected data-generating parameters in each of the subplot of Figure 10, on
four basis network structures in Appendix H.2 in the supplement to the paper.
Simulation results suggest that the false discovery rate is controlled below the
preset threshold α. Different data-generating parameter values affect the trade-
off between the sensitivity and the specificity of the model selection. In general,
multilayer networks with a larger effective sample size lead to a larger area under
the ROC curve which offers a tool to choose appropriate correction procedures
and thresholds for model selection in different scenarios. Additional results on
the false discovery rate with different basis network structures are provided in
Appendix H.2 in the supplement to the paper.

6. Application

We present a case study using a dataset on corporate law partnership among a
Northeastern US corporate law firm in New England collected by Lazega [25].
The dataset collected information about three types of cooperation among 71
lawyers in the corporate law firm, resulting in three networks including the
strong-coworker network, the advice network, and the friendship network. Since
the cooperation relationship collected are not symmetric, we only consider a
connection to be present when both sides acknowledged their cooperation. We
treat these three types of networks as a three-layer multilayer network embedded
among the 71 lawyers. A summary of this multilayer network is provided in Table
2. We apply the separable multilayer network model in (1) with the specification
in (6) to Lazega’s lawyer network, i.e., θ = (θ1, θ2, θ3, θ1,2, θ1,3, θ2,3). The

maximum pseudolikelihood estimator θ̃ is computed from the observed network,
the results of which are provided in Table 3.

As shown in Table 3, the maximum pseudolikelihood estimates θ̃1, θ̃2, and
θ̃3 correspond to the estimated single-layer effects of the coworker layer, the
advice layer, and the friendship layer, respectively, whereas θ1,2, θ1,3, and θ2,3
correspond to the layer interaction effects. We can calculate the conditional log-
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Coworker Layer Advice Layer Friendship Layer

Fig 4: The coworker layer, the advice layer and the friendship layer of Lazega’s
corporate law partnership network.

Table 3
MPLEs (and standard errors) of the separable multilayer network model for the Lazega’s

lawyer network.

θ̃1 θ̃2 θ̃3 θ̃1,2 θ̃1,3 θ̃2,3
−1.450 (.263) −3.334 (.244) −2.695 (.256) 1.801 (.244) 0.218 (.247) 2.458 (.231)
Coworker (C) Advice (A) Friendship (F) C × A C × F A × F

odds of each edge being present in the multilayer network given the rest of the
network. For example, if lawyer i and lawyer j are observed to be coworkers and
are friends at the same time, the odds of these two lawyers to have an advice
relationship is given by

P(X(A)
i,j = 1 |X(C)

i,j = 1, X
(F )
i,j = 1)

P(X(A)
i,j = 0 |X(C)

i,j = 1, X
(F )
i,j = 1)

= exp
(
θ̃2 + θ̃1,2 x

(C)
i,j + θ̃2,3 x

(F )
i,j

)
= exp

(
−3.334 + 1.801x

(C)
i,j + 2.458x

(F )
i,j

)
= 2.522,

providing interpretation of the interaction and influence among the different
layers.

Next, we use the MPLE to reproduce multilayer networks of the same size
and compare the sufficient statistics of the simulated networks and the Lazega’s
lawyer network. We recover the basis network according to Proposition 1, i.e.,
a dyad is activated if and only if at least one of its layers has a present edge in
the Lazega’s lawyer multilayer network. We then populate layers of all activated
dyads according to equation (6) by the MPLEs obtained in Table 3. Comparisons
of the sufficient statistics between the observed Lazega’s lawyer network and
the simulated networks with 10 replications are provided in Figure 5. Such
comparisons serve two key purposes. First, such comparisons are an established
method of diagnosing model fit in the statistical network analysis literature [20],
and second, provide a check on the approximate solution to the score equation.
Note that MPLEs are not guaranteed to reproduce (on average) observed values
of sufficient statistics in exponential families—in contrast to MLEs. The relative



J. Li et al./Learning cross-layer dependence structure in multilayer networks 21

100

200

300

400

Coworker Advice Friendship CxA CxF AxF CxAxF

Layer interaction

S
uf

fic
ie

nt
 s

ta
tis

tic

Box-plot of the reproduced sufficient statistic

Fig 5: Box-plot of reproduced statistics from 10 simulated samples using the
MPLE obtained from the Lazega’s lawyer network. Red dots are values of the
observed sufficient statistics of Lazega’s lawyer network.

ℓ2-error of the sufficient statistics between the observed and the average of the
10 simulated networks is 0.09, suggesting a successful re-construction of the
observed network statistics.

7. Discussion

In this work, we introduced a flexible class of statistical models for multilayer
networks. Key to our approach lies in the integrative nature by which we es-
tablish our framework, extending arbitrary strictly positive probability distri-
butions for single-layer networks to multilayer-network models through a novel
separable framework with Markov random field specifications. We established
the foundations for statistical inference through consistency and multivariate
normality results, the results of which have been demonstrated in simulation
studies and in an application. The key assumption to our approach lies in the
network separability assumption, which necessitates network dyads be condi-
tionally independent given the basis network. This assumption may or may not
be valid in practice, which would necessitate the development of generalizations
of the framework we established in this work through the relaxation of the condi-
tional independence assumption. Such relaxations would result in more complex
dependence structures, requiring new and careful theoretical treatment in or-
der to establish similar statistical foundations of models to the ones we have
developed here, representing potential avenues for future research.
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Appendix A: Proof of Proposition 1

We prove Proposition 1 from Section 2. For the first and second results, define
the set

A+ := {(x,y) ∈ X× Y : h(x,y) = 1} ,

and the vector-valued map φ : X 7→ Y by defining its components to be

φi,j(x) = 1(||xi,j ||1 > 0), {i, j} ⊂ N,

populating the vector φ(x) in the lexicographical ordering of the dyad indices
{i, j} ⊂ N. By the definition of h : X×Y 7→ {0, 1} and φ : X 7→ Y, φ(x) = y for
each pair (x,y) ∈ A+. Furthermore, the element y is unique for a given x ∈ X,
because if there would exists some y′ ∈ Y such that y ̸= y′ with the property
that {(x,y), (x,y′)} ⊆ A+, then there would exist a pair {i, j} ⊂ N such that
yi,j = 1 − y′i,j which implies 1(||xi,j ||1 > 0) ̸= y′i,j . In this case, h(x,y′) = 0
is contradicting the assumption that {(x,y)} ∈ A+. By (1), the functions f
and g are assumed to be strictly positive in their respective domains. Hence,
(X × Y) \ A+ is the largest null set of X × Y, i.e., Pθ(A) = 0 if and only if
A ⊆ (X× Y) \A+. Thus, the first and second results are established.
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For the third result, note that g is assumed to be strictly positive on its
domain Y. Hence, g(y) = Pθ(Y = y) > 0 for all y ∈ Y and Pθ(X = x |Y = y)
is therefore well-defined. By definition,

Pθ(X = x |Y = y) =
Pθ(X = x, Y = y)

Pθ(Y = y)
,

where Pθ(Y = y) is the marginal probability of event Y = y and is assumed to
be equal to g(y). The model form for Pθ given in (1) implies

Pθ(X = x, Y = y)

Pθ(Y = y)
=

f(x,θ) g(y)ψ(θ,y)

g(y)

= exp(log f(x,θ) + logψ(θ,y)),

under the assumption that h(x,y) = 1. Hence,

Pθ(X = x,Y = y) = Pθ(X = X | Y = y) Pθ(Y = y)

so that

log Pθ(X = x,Y = y) = log Pθ(X = X | Y = y) + log g(y),

as g(y) is the marginal probability mass function of Y , i.e., Pθ(Y = y) = g(y).
Lemma 3 establishes that Pθ(X = X | Y = y) belongs to a minimal exponential
family, completing the proof of the third and last result of the proposition.

Appendix B: Proof of Lemma 1

We prove Lemma 1 from Section 2. Using (1),

−E∇2
θ ℓ(θ;X,Y ) =

∑
y∈Y

∑
x∈X

−∇2
θ ℓ(θ;x,y)Pθ(X = x |Y = y) g(y)

=
∑
y∈Y

g(y)
∑
x∈X

−∇2
θ ℓ(θ;x,y)Pθ(X = x |Y = y)

=
∑
y∈Y

g(y)
∑

{i,j}⊂N : yi,j=1

I(θ)

= I(θ)
∑
y∈Y

g(y) ||y||1

= I(θ)E||Y ||1.

The above follows by exploiting the conditional independence of vectors xi,j

({i, j} ⊂ N) given Y = y under (1), which implies

ℓ(θ;x,y) =
∑

{i,j}⊂N

logPθ(Xi,j = xi,j |Y = y),
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and from the fact that the conditional probability distribution of Xi,j given Y
is a degenerate point mass at 0 when Yi,j = 0 so that −∇2

θ ℓ(θ;x,y) is a sum
of ||y||1 matrices each equal to I(θ), i.e., given y ∈ Y, we have∑

x∈X
−∇2

θ ℓ(θ;x,y)Pθ(X = x |Y = y)

=
∑

{i,j}⊂N

E
[
−∇2

θ Li,j(θ,Xi,j ,Y ) |Y = y
]

=
∑

{i,j}⊂N : yi,j=1

I(θ).

The fact that I(θ) is constant for all pairs {i, j} ⊂ N satisfying Yi,j = 1 follows
from the form of (1), which assumes each vector Xi,j ({i, j} ⊂ N) is condition-
ally independent and identically distributed, conditional on Y . Hence,

E
[
−∇2

θ ℓ(θ;X,Y )
]

= I(θ)E ||Y ||1,

which in turn implies

λmin(−E∇2
θ ℓ(θ;X,Y )) = λmin(I(θ))E ||Y ||1

λmax(−E∇2
θ ℓ(θ;X,Y )) = λmax(I(θ))E ||Y ||1.

Appendix C: Concentration inequalities for multilayer networks

We establish the concentration inequality of gradients of log-likelihood functions
of multilayer networks in Lemma 2. Recall the definition [Dg]

+ := max{0, Dg},
where

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j , Yv,w),

with {i, j} ≺ {v, w} implying the sum is taken with respect to the lexicograph-
ical ordering of pairs of nodes, and where g : Y 7→ (0, 1) is the marginal proba-
bility mass function of Y .

Lemma 2. Consider a multilayer network model following the form of equation
(1) and is defined on a set of N ≥ 3 nodes and K ≥ 1 layers. Define ∇θ(x,y) :=
−∇θ ℓ(θ;x,y), where ℓ(θ;x,y) is the log-likelihood function. Then, for all t > 0
and θ ∈ Rp, the probability

P (||∇θ(X,Y )− E∇θ(X,Y )||2 ≥ t)

is bounded above by

exp

(
− t2

36 λ̃⋆max (E ||Y ||1 + [Dg]+) + 2
√
p t

+ log p

)
+

1

E||Y ||1
.
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Proof of Lemma 2. By Proposition 1,

ℓ(θ;x,y) = log Pθ(X = x |Y = y) + log g(y).

Thus,

−∇θ(x,y) = ∇θ log Pθ(X = x |Y = y) +∇θ log g(y)

= s(x)− Eθ s(X),
(7)

as g(y) = Pθ(Y = y) is assumed to not be a function of θ. The last equation in
(7) follows from Lemma 3, which showed that Pθ(X = x |Y = y) is a minimal
exponential family with the natural parameter vector θ ∈ Rp and the sufficient
statistic vector s(x) defined in Lemma 3, inserting the familiar form of the score
equation of an exponential family with respect to the natural parameter vector
[e.g., Proposition 3.10, p. 32, 41]. Thus,

−(∇θ(X,Y )− E∇θ(X,Y )) = s(X)− Eθ s(X)− E [s(X)− Eθ s(X)]

= s(X)− E s(X).

Let t > 0 and θ ∈ Rp be arbitrary and fixed and define D2(θ, t) to be the event
that ||∇θ(X,Y )− E∇θ(X,Y )||2 ≥ t, i.e.,

D2(θ, t) = {x ∈ X : ||s(x)− E s(X)||2 ≥ t} .

Let ϵ > 0 and define E(ϵ) to be the event that |||Y ||1 − E||Y ||1| ≤ ϵ, i.e.,

E(ϵ) = {y ∈ Y : |||y||1 − E||Y ||1| ≤ ϵ} .

We assume that ϵ > 0 is chosen so that E(ϵ) is not empty, which implies
P(E(ϵ)) > 0 as g(y) is assumed to be strictly positive on Y. By the law of
total probability,

P (D2(θ, t)) = P (D2(θ, t) |E(ϵ)) P (E(ϵ)) + P (D2(θ, t) |E(ϵ)c) P (E(ϵ)c)

≤ P (D2(θ, t) |E(ϵ)) + P (E(ϵ)c) .
(8)

Note that we have not necessarily guaranteed that P (E(ϵ)c) > 0. However, if
P (E(ϵ)c) = 0 the non-conditional form of the law of total probability would
yield the bound

P (D2(θ, t)) ≤ P (D2(θ, t) |E(ϵ)) ,

which is strictly sharper than the bound we give in (8). We will use a divide-
and-conquer strategy to bound each probability in (8) in turn.

To bound the first term in (8), let U := {u ∈ Rp : ||u||2 ≤ 1} be a closed unit
ball in Rp. Define an ϵ-net Vϵ of U ⊂ Rp. By Corollary 4.2.13 of [42], there exists
an ϵ-net Vϵ ⊂ U such that its cardinality satisfies log |Vϵ| ≤ p log (2 ϵ−1 + 1).
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Taking ϵ = 1/2, for each u ∈ U, there exists a v ∈ V1/2 such that ||u−v||2 ≤ 1/2,
and by the Cauchy-Schwarz inequality,

⟨u , ∇θ ℓ(θ;x,y) ⟩ = ⟨v , ∇θ ℓ(θ;x,y) ⟩ + ⟨u− v , ∇θ ℓ(θ;x,y) ⟩

≤ ⟨u , ∇θ ℓ(θ;x,y) ⟩ + ||u− v||2 ||∇θ ℓ(θ;x,y)||2

≤ ⟨u , ∇θ ℓ(θ;x,y) ⟩ +
1

2
||∇θ ℓ(θ;x,y)||2.

(9)

If ||∇θ ℓ(θ;x,y)||2 ̸= 0, we can choose

ui =
∇θ ℓ(θ;x,y)i
||∇θ ℓ(θ;x,y)||2

,

so that ||u||2 ≤ 1 and u ∈ U. Next, re-write

⟨u , ∇θ ℓ(θ;x,y) ⟩ =
1

||⟨u , ∇θ ℓ(θ;x,y) ⟩||2

p∑
i=1

(∇θ ℓ(θ;x,y)i)
2

= ||∇θ ℓ(θ;x,y)||2,

and together with (9), we have

||∇θ ℓ(θ;x,y)||2 ≤ 2 max
v∈V1/2

⟨v , ∇θ ℓ(θ;x,y) ⟩. (10)

If ||∇θ ℓ(θ;x,y)||2 = 0, the inequality (10) holds trivially. As a result of (10),
for any t > 0,

P (D2(θ, t) |E(ϵ)) ≤ P
(
2 max

v∈V1/2

⟨v , ∇θ ℓ(θ;x,y) ⟩ ≥ t

)
≤

∑
v∈V1/2

P
(
⟨v , ∇θ ℓ(θ;x,y) ⟩ ≥ t

2

)

≤ exp (p log 5) max
v∈V1/2

P
(
⟨v , ∇θ ℓ(θ;x,y) ⟩ ≥ t

2

)
.

The last inequality is true because log |V1/2| ≤ p log 5. Note that

⟨v , ∇θ ℓ(θ;x,y) ⟩ =

p∑
l=1

vl [∇θ ℓ(θ;x,y)]l

=

p∑
l=1

vl [sl(x)− E sl(X)].

(11)

The form of (1) implies, through factorization principles, that the dyad-based
vectors Xi,j ({i, j} ⊂ N) are conditionally independent given Y [e.g., 29, p.
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11–13]. Hence, using Lemma 3, the components of the sufficient statistic vector
decompose into the sum

sl(X) =
∑

{i,j}⊂N

sl,i,j(Xi,j), l ∈ {1, . . . , p},

so that the components of s(X) are sums of bounded conditionally independent
random variables given Y . As a result, equation (11) can be further decomposed
into sums of independent random variables:

⟨v , ∇θ ℓ(θ;x,y) ⟩ =
∑

{i,j}⊂N

p∑
l=1

vl [sl,i,j(xi,j) − E sl,i,j(Xi,j)].

Using the forms for sl,i,j(Xi,j) given in Lemma 3, we have 0 ≤ sl,i,j(Xi,j) ≤ Yi,j
P-almost surely, because sl,i,j(Xi,j) ∈ {0, 1} and sl,i,j(Xi,j) = 0 if Yi,j = 0 P-
almost surely. Then for each {i, j} ⊂ N, we have

E
p∑

l=1

vl [sl,i,j(xi,j) − E sl,i,j(Xi,j)] = 0,

and by the Cauchy-Schwarz inequality, we obtain∣∣∣∣∣
p∑

l=1

vl [sl,i,j(xi,j) − E sl,i,j(Xi,j)]

∣∣∣∣∣ ≤ ||v||2
√
p ||sl,i,j(xi,j)− E sl,i,j(Xi,j)||∞

≤ 3

2

√
p.

The last inequality follows from

||v||2 ≤ ||u||2 + ||u− v||2 ≤ 1 +
1

2
≤ 3

2
.

The inequality is true because the construction of the ϵ-net V1/2 ⊂ U with
ϵ = 1/2 ensures that such a u ∈ U exists. We next bound the variance by

V
∑

{i,j}⊂N

p∑
l=1

vl [sl,i,j(xi,j) − E sl,i,j(Xi,j)]

=
∑

{i,j}⊂N

p∑
m=1

p∑
n=1

C (vm sm,i,j(Xi,j) , vn sn,i,j(Xi,j))

=
∑

{i,j}⊂N

p∑
m=1

p∑
n=1

vm vn C(sm,i,j(Xi,j) sn,i,j(Xi,j))

= ⟨v , ||y||1 I(θ⋆)v ⟩

≤ ||v||22 ||y||1 λ̃⋆max

≤ 9

4
||y||1 λ̃⋆max,
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where λ̃⋆max is the largest eigenvalue of the Fisher information of individual
activated dyad defined in Lemma 1 evaluated at the data-generating parameter
θ⋆. We then apply the one-sided Bernstein’s inequality to obtain the upper
bound for the conditional probability of D2(θ, t) as follows: [e.g., 42, Theorem
2.8.4]

P (D2(θ, t) |Y = y) ≤ exp (p log 5) max
v∈V1/2

P
(
⟨v , ∇θ ℓ(θ;x,y) ⟩ ≥ t

2

)

≤ exp

 − (t/2)2

2
9

4
||y||1 λ̃⋆max +

1

3

3

2

√
p
t

2

+ p log 5


= exp

(
−t2

18 ||y||1 λ̃⋆max + 2
√
p t

+ p log 5

)
.

(12)

Using the law of total probability, we bound P (D2(θ, t) |E(ϵ)) as follows:

P (D2(θ, t) |E(ϵ)) =
∑
y∈Y

P (D2(θ, t) ∩ [Y = y] |E(ϵ))

=
∑

y∈E(ϵ)

P (D2(θ, t) ∩ [Y = y] |E(ϵ))

=
∑

y∈E(ϵ)

P (D2(θ, t) | [Y = y] ∩ E(ϵ)) P(Y = y |E(ϵ))

=
∑

y∈E(ϵ)

P(D2(θ, t) |Y = y)
P(Y = y)

P(E(ϵ))
,

(13)

noting that [Y = y] ∩ E(ϵ) = [Y = y] whenever y ∈ E(ϵ) and in the case when
y ̸∈ E(ϵ), the intersection is empty, implying

P(Y = y |E(ϵ)) =
P([Y = y] ∩ E(ϵ))

P(E(ϵ))
=


P(Y = y)

P(E(ϵ))
y ∈ E(ϵ)

0 y ̸∈ E(ϵ)
.

We now bound (13) using the bound in (12):∑
y∈E(ϵ)

P(D2(θ, t) |Y = y)
P(Y = y)

P(E(ϵ))

≤
∑

y∈E(ϵ)

exp

(
−t2

18 ||y||1 λ̃⋆max + 2
√
p t

+ p log 5

)
P(Y = y)

P(E(ϵ))

≤ exp

(
−t2

18 (E ||Y ||1 + ϵ) λ̃⋆max + 2
√
p t

+ p log 5

) ∑
y∈E(ϵ)

P(Y = y)

P(E(ϵ))

= exp

(
−t2

18 (E ||Y ||1 + ϵ) λ̃⋆max + 2
√
p t

+ p log 5

)
,
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showing

P (D2(θ, t) |E(ϵ)) ≤ exp

(
−t2

18 (E ||Y ||1 + ϵ) λ̃⋆max + 2
√
p t

+ p log 5

)
.

The replacement of ||y||1 by E||Y ||1 + ϵ follows because ||y||1 ≤ E||Y ||1 + ϵ for
y ∈ E(ϵ), resulting in the upper bound above. We bound the second term in the
inequality (8) using Chebyshev’s inequality:

P(E(ϵ)c) = P(|||Y ||1 − E ||Y ||1| > ϵ)

≤ P(|||Y ||1 − E ||Y ||1| ≥ ϵ)

≤ V(||Y ||1)
ϵ2

.

We bound the variance V(||Y ||1) as follows:

V(||Y ||1) =
∑

{i,j}⊂N

VYi,j + 2
∑

{i,j}≺{v,w}⊂N

C(Yi,j , Yv,w)

≤ E ||Y ||1 + 2
∑

{i,j}≺{v,w}⊂N

C(Yi,j , Yv,w),

noting Yi,j ∈ {0, 1} so that VYi,j = P(Yi,j = 1)P(Yi,j = 0) ≤ EYi,j . Hence,

P(E(ϵ)c) ≤
E ||Y ||1 + 2

∑
{i,j}≺{v,w}⊂N C(Yi,j , Yv,w)

ϵ2

=
E ||Y ||1 + 2 [Dg]

+

ϵ2
.

(14)

Taking ϵ = E ||Y ||1 + 2 [Dg]
+
> 0 shows that P(E(ϵ)c) ≤ (E ||Y ||1)−1 and

P (D2(θ, t) |E(ϵ)) ≤ exp

(
−t2

36 λ̃⋆max (E ||Y ||1 + [Dg]+) + 2
√
p t

+ p log 5

)
.

Combining all results shows that

P (||∇θ(X,Y )− E∇θ(X,Y )||2 ≥ t)

is bounded above by

exp

(
−t2

36 λ̃⋆max (E ||Y ||1 + [Dg]+) + 2
√
p t

+ p log 5

)
+

1

E||Y ||1
.

As a final matter, note that this choice of ϵ > 0 ensures E(ϵ) contains all y ∈ Y
with ||y||1 ∈ [0, 2(E ||Y ||+ [Dg]

+)] as the empty graph is an element of Y with 0
edges.
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C.1. Auxiliary results

Lemma 3. Consider a multilayer network model following the form of equation
(1) with maximum interaction term H ≤ K and is defined on a set of N ≥ 3
nodes and K ≥ 1 layers. Then the following hold:

1. The conditional probability mass function of X given Y is an exponential
family:

Pθ(X = x | Y = y) ∝ h(x, y) exp (⟨θ, s(x)⟩) ,

where

h(x, y) =
∏

{i,j}⊂N

1(||xi,j ||1 > 0)yi,j 1(||xi,j ||1 = 0)1−yi,j ,

the sufficient statistic vector s : X 7→ Rp and the natural parameter vector
θ ∈ Rp.

2. For each l ∈ {1, . . . , p}, there exists h ∈ {1, . . . ,H} and {k1, . . . , kh} ⊆
{1, . . . ,K} such that the lth component of the sufficient statistic vector
s(x) can be written as

sl(x) =
∑

{i,j}⊂N

sl,i,j(x) =

h∏
r=1

x
(kr)
i,j . (15)

3. The exponential family outlined above is minimal, full, and regular.

Proof of Lemma 3. First, the form of the conditional probability distribu-
tion of X given Y derived in Proposition 1 is given by

Pθ(X = x |Y = y) = exp (log f(x,θ) + log ψ(θ,y)) , (16)

provided h(x,y) = 1. The form of (1) suggests that (16) will be a minimal
exponential family in canonical form due to the form of the Markov random
field specification for f(θ,x) and the definition of ψ(θ,y). From the form of
f(x,θ) in (1),

log f(x,θ) =
∑

{i,j}⊂N

(
K∑

k=1

θkx
(k)
i,j +

K∑
k<l

θk,lx
(k)
i,j x

(l)
i,j + . . .+

K∑
k1<...<kH

θk1,k2,...,kH
x
(k1)
i,j · · ·x(kH)

i,j

)
,

where H ≤ K is the highest order of cross-layer interactions included in the
model. We write θk1,k2,...,kh

to reference the h-order interaction parameter for
the interaction term among layers {k1, . . . , kh} ⊆ {1, . . . ,K}. As specified,
ψ(θ,y) is the normalizing constant for the exponential family. As such, the nat-
ural parameter space of the exponential family is Rp as the support of X is finite,
which implies ψ(θ,y) <∞ for all θ ∈ Rp and y ∈ Y. We establish minimality by
noting that the components of the parameter vector θ satisfy no linear or affine
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constraints. Attached to each parameter θk1,...,kh
({k1, . . . , kh} ⊆ {1, . . .K},

h ∈ {1, . . . ,H}) is the sufficient statistic

sk1,...,kh
(x) =

∑
{i,j}⊂N

x
(k1)
i,j · · · x(kh)

i,j .

Each statistic sk1,...,kh
is a function of distinct, non-degenerate random variables,

provided ||y||1 > 0, and so none of the statistics sk1,...,kh
satisfy any linear or

affine constraints. Hence, (1) specifies a minimal and full exponential family with

natural parameter space Rp of dimension p =
∑H

h=1

(
K
h

)
and sufficient statis-

tic vector s(x) with components sk1,...,kh
(x) ({k1, . . . , kh} ⊆ {1, . . . ,K}, h =

1, . . . ,H). Regularity follows trivially [e.g., Proposition 3.7, pp. 28, 41]. The
form of (15) outlines this for a linear indexing of the components of the suffi-
cient statistic vector.

Appendix D: Proof of Theorem 1

We prove Theorem 1 from Section 3. By Proposition 1, observing X = x implies
we observe Y = y, as for each given x ∈ X, Y = y (P-a.s.) for one and only
one y ∈ Y given by

yi,j = 1 (||xi,j ||1 > 0) , {i, j} ⊂ N.

Denote the gradient of −ℓ(θ;x,y) by

∇θ(x,y) := −∇θ ℓ(θ;x,y)

and the expected Hessian matrix of the negative log-likelihood by

H(θ) := −E∇2
θ ℓ(θ;X,Y ).

Theorem 6.3.4 of Ortega and Rheinboldt [32] states that if

(θ − θ⋆)⊤ ∇θ(x,y) ≥ 0

for all θ ∈ ∂B2(θ
⋆, ϵ), where ∂B2(θ

⋆, ϵ) is the boundary of the set

B2(θ
⋆, ϵ) = {θ ∈ Rp : ||θ − θ⋆||2 < ϵ},

then ∇θ(x,y) has a root in B2(θ
⋆, ϵ) ∪ ∂B2(θ

⋆, ϵ), i.e., θ̂ exists and satisfies

||θ̂−θ⋆||2 ≤ ϵ. Note that a root of ∇θ(x,y) is also a root of −∇θ(x,y); in what
follows, we consider finding a maximizer of ℓ(θ;x,y) by finding a minimizer
of −ℓ(θ;x,y). The classification of roots as maximizers/minimizers is justified
from the fact that that ℓ(θ;x,y) is concave in θ, a fact which follows from
Proposition 1, as g(y) is constant in θ and log Pθ(X = x |Y = y) is the
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log-likelihood of a minimal, full, and regular exponential family with natural
parameter vector θ and thus is strictly concave in θ [Proposition 3.10, p. 32,
41]. By the multivariate mean-value theorem [14, Theorem 5],

(θ − θ⋆)⊤E∇θ(X,Y ) = (θ − θ⋆)⊤E∇θ⋆(X,Y ) + (θ − θ⋆)⊤H(θ̇)(θ − θ⋆)

= (θ − θ⋆)⊤H(θ̇)(θ − θ⋆),

where θ̇ = tθ+(1− t)θ⋆ (some t ∈ [0, 1]) and by invoking Lemma 2 of Stewart
and Schweinberger [38], which shows that both the expected log-likelihood and
log-pseudolikelihood of a minimal exponential family is uniquely maximized
at the data-generating parameter vector θ⋆, implying E∇θ⋆(X,Y ) = 0. Let
γ ∈ (0, ϵ) and arbitrarily take θ ∈ ∂B2(θ

⋆, γ). Then

(θ − θ⋆)⊤H(θ̇)(θ − θ⋆) =
(θ − θ⋆)⊤H(θ̇)(θ − θ⋆)

(θ − θ⋆)⊤(θ − θ⋆)
||θ − θ⋆||22

≥ γ2 λmin(H(θ̇)),

since ||θ − θ⋆||2 = γ as θ ∈ ∂B2(θ
⋆, γ) and because the Rayleigh quotient of a

matrix is bounded below by the smallest eigenvalue of that matrix so that

(θ − θ⋆)⊤H(θ̇)(θ − θ⋆)

(θ − θ⋆)⊤(θ − θ⋆)
≥ λmin(H(θ̇)) ≥ inf

θ∈B2(θ⋆,ϵ)
λmin(H(θ)),

where λmin(H(θ̇)) is the smallest eigenvalue of H(θ̇), noting that

||θ̇ − θ⋆||2 = ||tθ + (1− t)θ⋆ − θ⋆||2 = t ||θ − θ⋆||2 ≤ ϵ,

since t ∈ [0, 1]. Lemma 1 showed that

λmin(H(θ)) = λmin(I(θ)) E ||Y ||1,

which in turn implies

inf
θ∈B2(θ⋆,ϵ)

λmin(H(θ)) = λ̃ϵmin E ||Y ||1,

where
λ̃ϵmin := inf

θ∈B2(θ⋆,ϵ)
λmin(I(θ)),

with I(θ) defined in Lemma 1. Hence, for θ ∈ ∂B2(θ
⋆, γ) (γ ∈ (0, ϵ)),

(θ − θ⋆)⊤E∇θ(X,Y ) ≥ γ2 λ̃ϵmin E ||Y ||1 ≥ 0. (17)

We next turn to showing

P
(

inf
θ∈B2(θ⋆,γ)

(θ − θ⋆)⊤ ∇θ(X,Y ) ≥ 0

)
≥ 1− exp (−2 p) − (E||Y ||1)−1,
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by showing that the event

sup
θ∈B2(θ⋆,γ)

|(θ − θ⋆)⊤ (E∇θ(X,Y )−∇θ(X,Y ))| < γ2 λ̃ϵmin E ||Y ||1

occurs with probability at least 1− exp (−2 p) − (E||Y ||1)−1. This will in turn

imply that the event that ||θ̂ − θ⋆||2 ≤ γ will happen with probability at
least 1− exp (−2 p) − (E||Y ||1)−1. Applying the Cauchy-Schwarz inequality and
utilizing standard vector norm inequalities, for θ ∈ ∂B2(θ

⋆, γ), we have

|(θ − θ⋆)⊤ (E∇θ(X,Y )−∇θ(X,Y ))|

≤ ||θ − θ⋆||2 ||∇θ(X,Y )− E∇θ(X,Y )||2

= γ ||∇θ(X,Y )− E∇θ(X,Y )||2.

Therefore, it suffices to demonstrate, for all θ ∈ ∂B2(θ
⋆, γ),

P
(
||∇θ(X,Y )− E∇θ(X,Y )||2 < γ λ̃ϵmin E ||Y ||1

)
is bounded below by

1− exp (−2 p) − (E||Y ||1)−1.

For ease of presentation, we define DN,γ,p to be the event

||∇θ(X,Y )− E∇θ(X,Y )||2 ≥ γ λ̃ϵmin E ||Y ||1.

Applying Lemma 2, the probability P (DN,γ,p) is bounded above by

exp

(
− (γ λ̃ϵmin E ||Y ||1)2

36 λ̃⋆max (E ||Y ||1 + [Dg]+) + 2
√
p γ λ̃ϵmin E ||Y ||1

+ p log 5

)
+

1

E||Y ||1
, (18)

recalling λ̃⋆max = λmax(I(θ
⋆)), [Dg]

+ := max{0, Dg}, and

Dg :=
∑

{i,j}≺{v,w}⊂N

C(Yi,j , Yv,w),

where {i, j} ≺ {v, w} implies the sum is taken with respect to the lexicographical
ordering of pairs of nodes. Choose

γ = β

√
p λ̃⋆max

E||Y ||1
1

λ̃ϵmin

,

where β > 0 is a positive constant independent of N and p whose value will be
determined later. If

lim
N→∞

β

√
p λ̃⋆max

E||Y ||1
1

λ̃ϵmin

= 0,
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then for N sufficiently large, we will have γ < ϵ, which ensures ϵ may be chosen
independent of N and p. While ϵ can be chosen independent of N and p, note
that p is expected to be a function of N and thus λ̃ϵmin will not (in general) be
independent of N , possibly holding implications for how fast p may grow with
N for certain θ⋆ and ϵ. This choice of γ in turn implies that the first term of
the exponent in (18) becomes

exp

− β2 λ̃⋆max E ||Y ||1 p

36 λ̃⋆max (E ||Y ||1 + [Dg]+) + 2β p

√
E ||Y ||1 λ̃⋆max

 . (19)

Canceling E ||Y ||1 in (19) gives

exp

− β2 λ̃⋆max p

36 λ̃⋆max

(
1 +

[Dg]
+

E ||Y ||1

)
+ 2β p

√
λ̃⋆max

E ||Y ||1

 .

By Assumption 2,

p ≤
√
λ̃⋆max E ||Y ||1

(
1 +

[Dg]
+

E ||Y ||1

)
,

and by Assumption 1,
[Dg]

+

E ||Y ||1
≤ C0,

where C0 > 0 is a positive constant independent of N and p, we have

p

√
λ̃⋆max

E ||Y ||1
≤ λ̃⋆max

(
1 +

[Dg]
+

E ||Y ||1

)
≤ λ̃⋆max (1 + C0) .

As a result, the upper bound in (18) reduces to

P (DN,γ,p) ≤ exp

((
−β2

36(1 + C0) + 2(1 + C0)β
+ log 5

)
p

)
+

1

E ||Y ||1
. (20)

To obtain the desired convergence rate, require

−β2

18C + C β
+ log 5 = −2, (21)

where C = 2(1 + C0). The constant β can be solved by using the quadratic
formula and the positive root is given by

β =
C log 5 − 2C +

√
(C log 5 − 2C)2 + 72 (C log 5− 2C)

2
,
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which ensures P (DN,γ,p) ≤ exp (−2 p) + (E||Y ||1)−1. We have thus shown, for
all θ ∈ ∂B2(θ

⋆, γ), that

P
(
||∇θ(X,Y )− E∇θ(X,Y )||2 ≤ γ λ̃ϵmin E ||Y ||1

)
is bounded below by

1− exp (−2 p) − (E ||Y ||1)−1,

under the above conditions. As a result, there exists N0 ≥ 3 such that, for all
N ≥ N0 and with probability at least 1 − exp (−2 p) − (E ||Y ||1)−1, the set Θ̂

is non-empty and the unique element of the set θ̂ ∈ Θ̂ satisfies (uniqueness
following from minimality, as discussed in Section 3)

||θ̂ − θ⋆||2 ≤ C

√
λ̃⋆max

λ̃ϵmin

√
p

E||Y ||1
.

D.1. Proof of Corollary 1

We prove Corollary 1 from Section 3. Under the same assumptions as Theorem 1
and in the case that the parameter dimension p is fixed, the proof of Corollary 1
remains unchanged from that of Theorem 1 except that the exponent in equation
(20) scales with N as opposed to p in Theorem 1. Following the same notations
in the proof of Theorem 1, we rewrite equation (21) as

−β2

18C + C β
+ log 5 = −η (N), (22)

where η : N+ 7→ R+ is an increasing function of N . For the ease of nota-
tion, we write ηN instead of η(N) in the rest of the proof. For any αN ∈
(2 (E ||Y ||1)−1, 1/2), let

exp (−ηN p) =
αN

2
.

Note that as N goes to infinity, αN is allowed to approach 0 through the in-
creasing of ηN . Then the upper bound of P (DN,γ,p) given in (20) becomes

P (DN,γ,p) ≤ αN

2
+

1

E ||Y ||1
≤ αN ,

where the last inequality follows from αN ≥ 2 (E ||Y ||1)−1. To obtain the desired
result, solve the positive root of β in terms of ηN from (22):

β =
C log 5 + ηN C +

√
(C log 5 + ηN C)2 + 72 (C log 5 + ηN C)

2
,
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and write ηN in terms of αN , where αN → 0 and ηN → ∞ as N → ∞:

ηN = − log (αN / 2)

p
.

Let

A1 = C log 5, A2 =
C

p
.

Then for αN ∈ (2 (E ||Y ||1)−1, 1/2),

β =
A1 − A2 log (αN / 2) +

√
(A1 − A2 log (αN / 2))2 + 72 (A1 − A2 log (αN / 2))

2

=

log
(αN

2

)  A1

log (αN / 2)
− A2 +

√(
A1

log (αN / 2)
− A2

)2

+ 72

(
A1

(log (αN / 2))2
− A2

log (αN / 2)

)
2

≤
log

(αN

2

)  A1

log 0.25
− A2 +

√(
A1

log 0.25
− A2

)2

+ 72

(
A1

(log (0.25))2
− A2

log (0.25)

)
2

= A
∣∣∣log (αN

2

)∣∣∣ ,
where

A =

∣∣∣∣∣∣ A1

log 0.25
− A2 +

√(
A1

log 0.25
− A2

)2

+ 72

(
A1

(log (0.25))2
− A2

log (0.25)

) ∣∣∣∣∣∣
2

.

As a result, when p is fixed, we showed that for αN ∈ (2 (E ||Y ||1)−1, 1/2), with
probability at least 1− αN ,

||θ̂ − θ⋆||2 ≤ A′ | log (αN / 2) |

√
λ̃⋆max

λ̃ϵmin

√
1

E||Y ||1
,

where A′ = A
√
p is a positive constant independent of N .

Appendix E: Proof of Theorem 2 and Corollary 2

We prove Theorem 2 and Corollary 2 from Section 3 in one chapter. We first use
Fano’s method outlined in Chapter 15.3 of Wainwright [43] and the Kullback-
Leibler divergence to derive the lower bound of the minimax risk for multilayer
network models specified in (1). Let ϵ > 0 be fixed and consider γ ∈ (0, ϵ).
For M ≥ 2 and some δ > 0, let {θ1, . . . ,θM} ⊂ B2(θ

⋆, γ) be a 2δ-separated
set. We then have ||θi − θj ||2 ≥ 2δ for any pair {i, j} ⊆ {1, . . . ,M}. Define the
Kullback-Leibler divergence of θi and θj by

KL(θi,θj) :=
∑
x∈X

φθi(x) log
φθi(x)

φθj
(x)

, {i, j} ⊆ {1, . . . ,M},
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where φθ(x) belongs to a minimal exponential family defined in Proposition 1:

φθ(x) := Pθ(X = x | Y = y) = exp (log f(x,θ) + logψ(θ,y)),

recalling f(x,θ) and ψ(θ,y) follow the same form of (1). For θ ∈ Rp, denote by
s(X) ∈ Rp the sufficient statistic vector of the exponential family φθ(x). Then
the Kullback-Leibler divergence can be written as

KL(θi,θj) =
∑
x∈X

φθi
(x) [⟨θi − θj , s(x) ⟩+ log ψ(θi,y)− log ψ(θj ,y)]

= Eθi
⟨θi − θj , s(X) ⟩+ log ψ(θi,y)− log ψ(θj ,y)

= ⟨θi − θj , µ(θi) ⟩+ log ψ(θi,y)− log ψ(θj ,y),

(23)

where µ(θ) := Eθ s(X) is the mean-value parameter map of the exponential
family. By Corollary 2.3 of Brown [7],

log ψ(θj) = log ψ(θi) + ⟨θj − θi, −µ(θi) ⟩ −
1

2
⟨θj − θi, IX(θ̇) (θj − θi) ⟩

= log ψ(θi) + ⟨θi − θj , µ(θi) ⟩ −
1

2
⟨θi − θj , IX(θ̇) (θi − θj) ⟩,

(24)

where θ̇ = tθi+(1−t)θj for some t ∈ (0, 1), and IX(θ̇) is the Fisher information

matrix at θ̇ for X ∈ X. For a fixed ϵ > 0 such that γ ∈ (0, ϵ) and {θ1, . . . ,θM} ⊂
B2(θ

⋆, γ), define

λ̃ϵmax := sup
θ∈B2(θ⋆,ϵ)

λmax(IX(θ))

E ||Y ||1
= sup

θ∈B2(θ⋆,ϵ)

λmax (I(θ)),

where λmax(A) is the maximum eigenvalue of matrix A and I(θ) is the Fisher
information matrix for an activated dyad defined in Lemma 1. Combining (23)
and (24) and using the standard matrix norm inequality and the triangle in-
equality, we have

KL(θi,θj) =
1

2
⟨θi − θj , IX(θ̇) (θi − θj) ⟩

≤ 1

2
E ||Y ||1 λ̃ϵmax ||θi − θj ||22

≤ 1

2
E ||Y ||1 λ̃ϵmax (||θi − θ⋆||2 + ||θj − θ⋆||2)2

≤ 2 ϵ2 E ||Y ||1 λ̃ϵmax.

Note that the size M of the largest possible 2 δ-separated set {θ1, . . . ,θM} ⊂
B2(θ

⋆, γ) ⊂ Rp is the packing number of B2(θ
⋆, γ). By Lemma 4.2.8 and Corol-

lary 4.2.13 of Vershynin [42], we have

M ≥
( γ
2 δ

)p
,
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and
log M ≥ p log

( γ
2 δ

)
.

By Proposition 15.12 of Wainwright [43], the minimax risk RN has the lower
bound

RN ≥ δ

[
1− F + log 2

log M

]
,

where
F := max

{i,j}⊆{1,...,M}
KL(θi,θj).

Since γ ∈ (0, ϵ), the lower bound for RN can be written as

RN ≥ δ

[
1− 2 γ2 E ||Y ||1 λ̃ϵmax + log 2

p log (γ/2 δ)

]
.

To obtain the desired lower bound RN ≥ δ/2, we need

2 γ2 E ||Y ||1 λ̃ϵmax + log 2

p log (γ/2 δ)
≤ 1

2
,

which implies

4 γ2 E ||Y ||1 λ̃ϵmax

p
+

2 log (2)

p
≤ log(γ/2)− log (δ).

Exponentiating both sides we have

exp

(
4 γ2 E ||Y ||1 λ̃ϵmax

p
+

2 log (2)

p

)
≤ γ/2

δ
.

This leads us to the following inequality

δ ≤ γ

2
exp

(
− 4 γ2 E ||Y ||1 λ̃ϵmax

p
− 2 log (2)

p

)
.

Choosing

γ = 2C
√

p

λ̃ϵmax E ||Y ||1
for some C > 0, we obtain the bound

δ ≤ C exp

(
−16C2 − 2 log (2)

p

) √
p

λ̃ϵmax E ||Y ||1
. (25)

As long as p = O (λ̃ϵmax E ||Y ||1), we can choose C to ensure γ ∈ (0, ϵ). Finally,
for all δ > 0 satisfying (25), we have RN lower bounded by

RN ≥ δ

2
.
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Note that as p ≥ 1,

exp

(
−16C2 − 2 log (2)

p

)
≥ exp

(
−16C2 − 2 log (2)

)
,

we may choose

δ = C exp
(
−16C2 − 2 log (2)

) √ p

λ̃ϵmax E ||Y ||1

= A′
√

p

λ̃ϵmax E ||Y ||1
,

where A′ = C exp
(
−16C2 − 2 log (2)

)
. Then we obtain the desired lower bound

for the minimax risk

RN ≥ δ

2
=

A′

2

√
p

λ̃ϵmax E ||Y ||1
. (26)

Next, we show the lower bound in (26) matches with the upper bound of the

ℓ2-error of the maximum likelihood estimator θ̂ provided in Theorem 1. Let
A = A′/2 be an unknown constant independent of N and p. We have

RN ≥ A
√

p

λ̃ϵmax E ||Y ||1

= A

√
λ̃⋆max

λ̃⋆max

(
λ̃ϵmin

λ̃ϵmin

)
1√
λ̃ϵmax

√
p

E ||Y ||1

= A
1√
λ̃ϵmax

λ̃ϵmin√
λ̃⋆max

√
λ̃⋆max

λ̃ϵmin

√
p

E||Y ||1

≥ A

(
λ̃ϵmin

λ̃ϵmax

) √
λ̃⋆max

λ̃ϵmin

√
p

E||Y ||1
,

where the last inequality holds because λ̃ϵmax ≥ λ̃⋆max. Under the assumption
that

λ̃ϵmax = O
(
λ̃ϵmin

)
,

we showed that the lower bound of the minimax risk RN and the upper bound
of the ℓ2-error of the maximum likelihood estimator presented in Theorem 1
match up to an unknown constant independent of N and p.
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Appendix F: Proposition 2 and proof

In order to establish a bound on the error of the multivariate normal approxi-
mation for estimators of data-generating parameters, we first establish an error
bound on the multivariate normal approximation of a standardization of the suf-
ficient statistic vector s(X) of the exponential family distribution of X given
Y , derived in Lemma 3, in Proposition 2 using a Lyapunov type bound pre-
sented in Raič [33]. Proposition 2 provides the basis for our normality proof for
estimators which we present in Theorem 3.

Proposition 2 Consider a separable multilayer network model following the
form of equation (1) and is defined on a set of N ≥ 3 nodes and K ≥ 1 layers.
Denote by s(X) ∈ Rp the sufficient statistic vector of the exponential family
P(X = x |Y = y) as defined in Lemma 3. Let EY be the random conditional
expectation operator for the distribution of X conditional on Y , and define

SN := (I(θ⋆) ||Y ||1)−1/2 (s(X)− EY s(X))

=
∑

{i,j}⊂N

(I(θ⋆) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)).

For any measurable convex set A ⊂ Rp,

|P(SN ∈ A)− Φ(Z ∈ A) | ≤ 83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
,

where Φ is the standard multivariate normal measure and Z ∼ MvtNorm(0p, Ip),
where 0p is the p-dimensional vector of zeros and Ip is the p×p identity matrix.

Before we prove Proposition 2, we introduce a Lyapunov type bound in
Lemma 4 provided by Theorem 1 of Raic [33].

Lemma 4. Consider a sequence of n ≥ 1 independent random vectors Wi ∈ Rp.
Assume that EWi = 0p and

∑n
i=1 VWi = Ip where 0p is the p-dimensional

vector of zeros and Ip is the p× p identity matrix. Define

Sn =

n∑
i=1

Wi

and let Z be the standard multivariate normal random variable, i.e., Z ∼
MvtNorm(0p, Ip). Then, for all measurable convex sets A ⊂ Rp,

|P(Sn ∈ A)− Φ(Z ∈ A)| ≤ (42 p1/4 + 16)

n∑
i=1

E ||Wi||32,

where Φ is the standard multivariate normal measure.

We now turn to proving Proposition 2.
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Proof of Proposition 2. By Proposition 1 and Lemma 3, the conditional
distribution of the multilayer network X given Y follows an exponential family
with sufficient statistic vector that can be decomposed into the sum of condi-
tionally independent dyad-based statistics:

s(X) =
∑

{i,j}⊂N

si,j(X),

with the precise formula for si,j(X) given in Lemma 3. Define

SN := (I(θ⋆) ||Y ||1)−1/2 (s(X)− EY s(X))

=
∑

{i,j}⊂N

(I(θ⋆) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)),

where I(θ⋆) is the Fisher information matrix of an activated dyad Xi,j for
{i, j} ⊂ N satisfying Yi,j = 1 evaluated at θ⋆ per Lemma 1 and where EY is the
random conditional expectation operator with respect to the distribution of X
conditional on Y . For γ > 0 satisfying γ < E ||Y ||1, define the event E(γ) by

E(γ) := {y ∈ Y : ||y||1 ≥ E||Y ||1 − γ} .

In words, E(γ) is the subset of configurations of the single-layer network Y which
have the number of edges equal to at least the expected number of activated
dyads E ||Y ||1 minus γ > 0. The restrictions placed on γ ensure that E ||Y ||1−γ >
0 which implies that E(γ) will not contain the empty graph which has no edges
and that E(γ) will contain the complete graph with

(
N
2

)
edges as E ||Y ||1 <

(
N
2

)
(strict inequality following from the fact that g(y), the marginal probability
mass function of Y , is assumed to be strictly positive on Y). Hence, P(E(γ)) > 0
and P(E(γ)c) > 0. Let A ⊂ Rp be a measurable convex set. By the law of total
probability and the triangle inequality, we have

|P(SN ∈ A)− Φ(Z ∈ A) | ≤ |P(Sn ∈ A |E(γ))− Φ(Z ∈ A)| P(E(γ))

+ |P(Sn ∈ A |Ec(γ))− Φ(Z ∈ A)| P(Ec(γ))

≤ sup
y∈E(γ)

|P(SN ∈ A |Y = y)− Φ(Z ∈ A) |

+P(Ec(γ)),

(27)

noting |P(Sn ∈ A |Ec(γ))− Φ(Z ∈ A)| ≤ 1 and P(E(γ)) ≤ 1. Taking

Wi,j = (I(θ⋆) ||Y ||1)−1/2 (si,j(X)− EY si,j(X)),

we have
E [Wi,j |Y = y] = 0,

a result of the tower property of conditional expectation, and

V
[∑

{i,j}⊂N Wi,j |Y = y
]

= Ip,
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which follows from Lemma 1 which establishes that V[si,j(X) |Y = y] = I(θ⋆)
when Yi,j = 1, recalling the form of the Fisher information matrix of exponen-
tial families to be the covariance matrix of the sufficient statistic vector [e.g.,
Proposition 3.10, pp. 32, 41], and due to the fact that V[si,j(X) |Y = y] = 0p,p

when Yi,j = 0. Applying Lemma 4 to the first term of the summation of (27),
for any measurable convex set A ⊂ Rp,

|P(SN ∈ A |Y = y)− Φ(Z ∈ A)|

is bounded above by

(42 p1/4 + 16)
∑

{i,j}⊂N

E
[
||Wi,j ||32 |Y = y

]
.

Given Y = y, using standard matrix and vector norm inequalities,

||Wi,j ||2 = ||(I(θ⋆) ||y||1)−1/2 (si,j(X)− E si,j(X))||2

≤ ||y||−1/2
1 |||I(θ⋆)−1/2|||2 ||si,j(X)− E si,j(X)||2

≤ (||y||1 λ̃ϵmin)
−1/2 p1/2 yi,j ,

where ||| · |||2 denotes the spectral norm of a p × p matrix. From the proof of
Lemma 2, for all l ∈ {1, . . . , p}, we have

0 ≤ sl,i,j(x) ≤ 1, {i, j} ⊂ N,

P-almost surely. Hence,

P(||si,j(X)− EY si,j(X)||∞ ≤ yi,j |Y = y) = 1,

implying (conditional on Y = y)

||si,j(X)− EY si,j(X)||2 ≤ (p yi,j)
1/2 = p1/2 yi,j ,

P-almost surely. As a result,

E
[
||Wi,j ||32 |Y = y

]
≤ (||y||1 λ̃ϵmin)

−3/2 p3/2 yi,j ,

noting that y3i,j = yi,j ∈ {0, 1}. Using the fact that 42 p1/4+16 ≤ 58 p1/4 (p ≥ 1),
we have

(42 p1/4 + 16)
∑

{i,j}⊂N

E
[
||Wi,j ||32 |Y = y

]
≤ 58 p7/4

∑
{i,j}⊂N

yi,j (||y||1 λ̃ϵmin)
−3/2

= 58 p7/4 ||y||−1/2
1 (λ̃ϵmin)

−3/2

≤ 58 p7/4 (E ||Y ||1 − γ)−1/2 (λ̃ϵmin)
−3/2,
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as the conditioning event E(γ) and choice of γ ensure that ||y||1 ≥ E||Y ||1−γ > 0.
We bound the second term in (27) by Chebyshev’s inequality using equation (14)
in the proof of Lemma 2:

P(Ec(γ)) ≤ E ||Y ||1 + 2 [Dg]
+

γ2
.

Taking γ = 2−1 E ||Y ||1 > 0, we have

P(Ec(γ)) ≤ 4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Combining terms, we obtain the bound

|P(SN ∈ A)− Φ(Z ∈ A)| ≤ 83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Note that the asymptotic multivariate normality can be established provided

lim
N→∞

[
83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

]
= 0,

resulting in the following asymptotic convergence in distribution:

SN
D−→ Z ∼ MvtNorm (0, Ip) .

Appendix G: Proof of Theorem 3

In order to demonstrate the feasibility of the normal approximation for maxi-
mum likelihood estimators θ̂ of θ⋆, we first start with a standard Taylor expan-
sion of the negative score equation:

−∇θ ℓ(θ̂;x,y) = −∇θ ℓ(θ
⋆;x,y)−∇2

θ ℓ(θ
⋆;x,y) (θ̂ − θ⋆)−R, (28)

where R ∈ Rp is the vector of remainders given in the Lagrange form. Denoting
by Ri, (θ̂−θ⋆)i, and (∇θ ℓ(θ;x,y))i the i

th component of R, (θ̂−θ⋆), and the
score function ∇θ ℓ(θ;x,y), respectively. The remainder term Ri (i = 1, . . . , p)
is given by

Ri =

p∑
j=1

1

2

∂2 (∇θ ℓ(θ̇i;x,y))i
∂ θ2j

(θ̂ − θ⋆)2j

+
∑

1≤j<k≤p

∂2 (∇θℓ(θ̇i;x,y))i
∂ θj ∂ θk

(θ̂ − θ⋆)j (θ̂ − θ⋆)k,
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where θ̇i = ti θ̂ + (1− ti)θ
⋆ (for some ti ∈ [0, 1]). By Proposition 1,

ℓ(θ;x,y) = log Pθ(X = x |Y = y) + log g(y).

By Lemma 3, the probability mass function Pθ(X = x |Y = y) belongs to
a minimal exponential family with the sufficient statistic vector s(x) given by
equation (15) in Lemma 3. We then have,

−∇θ ℓ(θ;x,y) = −(s(x)− Ey
θ s(X))

−∇2
θ ℓ(θ;x,y) = Vy

θ s(X) = I(θ⋆) ||y||1,

where Ey
θ and Vy

θ are the conditional expectation and variance operators, respec-
tively, of the conditional distribution of X given Y = y, and by using standard
formulas for exponential families [e.g., Proposition 3.8, pp. 29, 41] and the re-

sults of Lemma 1. Note ∇θ ℓ(θ̂;x,y) = 0, as the maximum likelihood estimator

θ̂ solves the score equation by definition. We re-arrange (28) and multiply both
sides by (I(θ⋆) ||Y ||1)−1/2 to obtain

(I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)− (I(θ⋆) ||Y ||1)−1/2 R

= (I(θ⋆) ||Y ||1)−1/2 (s(X)− EY s(X)).
(29)

Define ∆ := (I(θ⋆) ||Y ||1)−1/2 R. Let A ⊂ Rp be any measurable convex subset
of Rp and Z ∼ MvtNorm(0p, Ip). We are interested in bounding the quantity∣∣∣P((I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)−∆ ∈ A)− Φ(Z ∈ A)

∣∣∣ .
Then from (29),

P
(
(I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)−∆ ∈ A

)
= P

(
(I(θ⋆) ||Y ||1)−1/2 (s(X)− EY s(X)) ∈ A

)
.

Applying Proposition 2, for all measurable convex sets A ⊆ Rp,∣∣P ((I(θ⋆) ||Y ||1)−1/2 (s(X)− EY s(X)) ∈ A
)
− Φ(Z ∈ A)

∣∣
is bounded above by

83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.

Hence, ∣∣∣P((I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)−∆ ∈ A)− Φ(Z ∈ A)
∣∣∣

is bounded above by

83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
.
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We lastly handle the term ∆ by showing that ||∆||2 is small with high probability.
We first use standard vector/matrix norm inequalities to bound

||∆||2 = ||(I(θ⋆) ||Y ||1)−1/2 R||2 ≤ |||I(θ⋆)−1/2|||2√
||Y ||1

||R||2 ≤ ||R||2√
λ̃ϵmin||Y ||1

,

noting that the spectral norm |||I(θ⋆)−1/2|||2 is equal to the largest eigenvalue
of I(θ⋆)−1/2 which will be the reciprocal of the smallest eigenvalue of I(θ⋆)1/2,

which is bounded below by

√
λ̃ϵmin. Using a standard result from the Taylor

theorem for functions with multiple variables, if for each i = 1, . . . , p, there
exists constants Mi > 0 such that

sup
θ∈Rp : ||θ−θ⋆||1≤||θ̂−θ⋆||1

∣∣∣∣ ∂2(∇θ ℓ(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ ≤ Mi, 1 ≤ j ≤ k ≤ p,

then the Lagrange remainder is bounded above by

Ri ≤ Mi

2
||θ̂ − θ⋆||21

on the set {θ ∈ Rp : ||θ−θ⋆||1 ≤ ||θ̂−θ⋆||2}. By Lemma 5, conditional on Y = y,
we have, for all i = 1, . . . , p, the bound Mi ≤ 2 ||y||1. Hence,

||∆||2 ≤ 1√
λ̃ϵmin ||y||1

√√√√ p∑
i=1

R2
i ≤ 1√

λ̃ϵmin ||y||1

√√√√ p∑
i=1

||y||21 ||θ̂ − θ⋆||41

≤ 1√
λ̃ϵmin ||y||1

√
p ||y||21 ||θ̂ − θ⋆||41 ≤

√
p ||y||1 ||θ̂ − θ⋆||21√

λ̃ϵmin ||y||1

≤
√
p
√
||y||1 p ||θ̂ − θ⋆||22√

λ̃ϵmin

≤
p3/2

√
||y||1 ||θ̂ − θ⋆||22√
λ̃ϵmin

.

(30)

By Chebyshev’s inequality—as in the proof of Lemma 2—we can establish that

P
(
|||Y ||1 − E ||Y ||1| >

1

2
E ||Y ||1

)
≤ 4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2
. (31)

Under Assumptions 1, 2 and 3, Theorem 1 established that there exist constants
C > 0 and N0 ≥ 3 such that, for all N ≥ N0, the event

||θ̂ − θ⋆||2 ≤ C

√
λ̃⋆max

λ̃ϵmin

√
p

E||Y ||1
(32)

occurs with probability at least 1 − exp (−2 p) − (E ||Y ||1)−1. Define E1 to be
the event

|||Y ||1 − E ||Y ||1| ≤ 1

2
E ||Y ||1
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and E2 to be the event in (32), and define R to be the corresponding values of
∆ in the event (X,Y ) ∈ E1 ∩ E2, under which we have the bound

||∆||2 ≤
p3/2

√
||y||1√

λ̃ϵmin

C2 λ̃⋆max

(λ̃ϵmin)
2

p

E||Y ||1

≤
C2 p5/2

√
2E ||Y ||1

E||Y ||1
λ̃⋆max

(λ̃ϵmin)
5/2

=

√
2C2 p5/2√
E||Y ||1

λ̃⋆max

(λ̃ϵmin)
5/2

.

(33)

The first inequality in (33) is obtained by combining the bounds in (30) and
(32). The second inequality in (33) is using the fact that

||y||1 ≤ E ||Y ||1 +
1

2
E ||Y ||1 ≤ 2E ||Y ||1

in the event y ∈ E1. Moreover, a union bound shows that

P(∆ ̸∈ R) ≤ P(Ec
1) + P(Ec

2)

≤ exp (−2 p) +
5

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

≤ exp (−2 p) +
5 + 8C0

E ||Y ||1
,

where the constant C0 and the last inequality follow from Assumption 1. Hence,

P

(
||∆||2 ≤

√
2C2 p5/2√
E||Y ||1

λ̃⋆max

(λ̃ϵmin)
5/2

)
≥ 1− exp (−2 p) − 5 + 8C0

E ||Y ||1
.

Taken together, we have shown under the assumptions of Theorem 1 that there
exists N0 ≥ 3 such that, for all N ≥ N0, the error of the multivariate normal
approximation∣∣∣P((I(θ⋆) ||Y ||1)1/2 (θ̂ − θ⋆)−∆ ∈ A)− Φ(Z ∈ A)

∣∣∣
is bounded above by

83

(λ̃ϵmin)
3/2

√
p7/2

E ||Y ||1
+

4

E ||Y ||1
+

8 [Dg]
+

(E ||Y ||1)2

where ∆ satisfies

P

(
||∆||2 ≤

√
2C2 p5/2√
E||Y ||1

λ̃⋆max

(λ̃ϵmin)
5/2

)
≥ 1− exp (−2 p) − 5 + 8C0

E ||Y ||1
.
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G.1. Auxiliary results for proof of Theorem 3

Lemma 5. Consider a separable multilayer network model following the form
of equation (1) and is defined on a set of N ≥ 3 and K ≥ 1 layers and denote
by ℓ(θ;x,y) the log-likelihood function. Then, for each i = 1, . . . , p and ϵ > 0,

sup
θ∈Rp : ||θ−θ⋆||2≤ϵ

∣∣∣∣∂2 (∇θ ℓ(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ ≤ 2 ||y||1,

where (∇θ ℓ(θ;x,y))i is the ith component of the score function ∇θ ℓ(θ;x,y).

Proof of Lemma 5. By Proposition 1, given the observation x of X (i.e.,
observation of the eventX = x), Y is predictable with unique value y ∈ Y given
by the formula in Proposition 1, and (x,y) is network concordant. Further, by
Proposition 1

ℓ(θ;x,y) = log Pθ(X = x | Y = y) + log g(y),

where log Pθ(X = x|Y = y) is the log-likelihood of a minimal, full, and regular
exponential family. Thus, the second order derivative of ℓ(θ;x,y) with respect
to the ith and jth components of θ correspond to the variance (in the case i = j)
or covariance (in the case of i ̸= j) of corresponding sufficient statistic(s) of the
exponential family [e.g., Proposition 3.8, p. 29, 41], with sufficient statistics
given in Lemma 3. For {i, j} ⊆ {1, . . . , p},

∂ (∇θ ℓ(θ;x,y))i
∂ θj

=
∂2 ℓ(θ;x,y)

∂ θi ∂ θj
= Cθ(si(X), sj(X) |Y = y),

and when i = j ∈ {1, . . . , p},

∂ (∇θ ℓ(θ;x,y))i
∂ θi

=
∂2 ℓ(θ;x,y)

∂ θ2i
= Vθ(si(X) |Y = y).

As a result, for {i, j} ⊆ {1, . . . , p} and k ∈ {1, . . . , p},∣∣∣∣ ∂2 (∇θ ℓ(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Cθ(si(X), sj(X) |Y = y)

∂ θk

∣∣∣∣ ,
and when i = j ∈ {1, . . . , p} and k ∈ {1, . . . , p},∣∣∣∣ ∂2 (∇θ ℓ(θ;x,y))i

∂ θi ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Vθ(si(X) |Y = y)

∂ θk

∣∣∣∣ .
By Lemma 3 equation (15), conditional on Y = y, each sufficient statistic si(X)
(i ∈ {1, . . . , p}) can be decomposed into the sum of conditionally independent
statistics of each dyad Xv,w, for {v, w} ⊆ N. We can then write

Cθ(si(X), sj(X) |Y = y) =
∑

{v,w}⊂N

Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y),



J. Li et al./Learning cross-layer dependence structure in multilayer networks 27

noting that by conditional independence Cθ(si,v,w(Xv,w), sj,r,t(Xr,t) |Y = y) =
0 whenever {r, t} ≠ {v, w}, and when i = j, we can write

Vθ(si(X) |Y = y) =
∑

{v,w}⊂N

Vθ(si,v,w(Xv,w) |Y = y),

again appealing to the conditional independence given Y of the random variables
si,v,w(Xv,w) ({v, w} ⊂ N). As a result, for k ∈ {1, . . . , p}, it suffices to show
that, ∣∣∣∣ ∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ ≤ 2,

and ∣∣∣∣ ∂ Vθ(si,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ ≤ 1.

Recall that the sufficient statistic si,v,w(X) (i = 1, . . . , p) is defined in Lemma
3 by

si,v,w(Xv,w) =

h∏
t=1

X(kt)
v,w , {v, w} ⊂ N,

for some h ∈ {1, . . . ,H} and {k1, . . . , kh} ⊆ {1, . . . ,K}. Define the set Si,v,w

of components of the sufficient statistic vector sv,w(X) for {v, w} ⊂ N and
i = 1, . . . , p by

Si,v,w :=


h′∏
t=1

X(lt)
v,w : {l1, . . . , lh′} ⊂ {k1, . . . , kh}, h′ < h

 ,

where h ∈ {1, . . . ,H} and {k1, . . . , kh} ⊆ {1, . . . ,K}. The set Si,v,w is the set of
components of the sufficient statistic vector sv,w(X) of dyad {v, w} ⊂ N that
have a value of 1 when si,v,w(X) = 1. For the ease of notation, let ISi,v,w be
the set of dimension indices whose corresponding components of the sufficient
statistic vector sv,w(X) belong to the set Si,v,w:

ISi,v,w
:= {j ∈ {1, . . . , p} : sj,v,w(X) ∈ Si,v,w}.

Define the conditional expectation of si,v,w(X) given Y = y for any i ∈
{1, . . . , p} and {v, w} ⊂ N by

Pi,v,w(θ;X,y) := Pθ (si,v,w(X) = 1 |Y = y).

Denote by Li the set of layer indices {k1, . . . , kh} ⊆ {1, . . . ,K} that define the
ith component si,v,w(Xv,w) of the sufficient statistic vector sv,w(X) for any
{v, w} ⊂ N, j ∈ {1, . . . , p}, and some h ∈ {1, . . . ,H}. We then define

X
(Li)
v,w :=

{
X

(k1)
v,w , . . . , X

(kh)
v,w

}
, X

(−Li)
v,w := Xv,w \X(Li)

v,w ,

and the corresponding sample space

X(Li)
v,w := {0, 1}h, X(−Li)

v,w := {0, 1}H−h,
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for some h ∈ {1, . . . ,H}. Then we can write

Pi,v,w(θ;X,y) = Pθ

(∏
l∈Li

X(l)
v,w = 1 |Y = y

)

=

∑
X(−Li)

v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈Ic
Si,v,w

θj sj,v,w(x)


∑
Xv,w

exp

 p∑
j=1

θj sj,v,w(x)

 .

Let

Z(θ) :=
∑
Xv,w

exp

 p∑
j=1

θj sj,v,w(x)

 ,

and take the derivative of Pi,v,w(θ;x,y) with respect to θk for k = 1, . . . , p. We
have

∂ Pi,v,w(θ;X,y)

∂ θk

≤

∑
X(−Li)

v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈Ic
Si,v,w

θj sj,v,w(x)

 (
Z(θ)− ∂ Z(θ)

∂ θk

)
Z(θ)2

=

∑
X(−Li)

v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈Ic
Si,v,w

θj sj,v,w(x)


∑

Xv,w

exp

 p∑
j=1

θj sj,v,w(x)

 (1− sk,v,w(x))


Z(θ)2

≤

∑
X(−Li)

v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈Ic
Si,v,w

θj sj,v,w(x)

 Z(θ)

Z(θ)2

≤ 1.

(34)

The first inequality is obtained because sk,v,w(x) ≤ 1, and the last inequality is
due to the fact that

∑
X(−Li)

v,w

exp

 ∑
j∈ISi,v,w

θj +
∑

j∈Ic
Si,v,w

θj sj,v,w(x)


is bounded above by

∑
Xv,w

exp

 p∑
j=1

θj sj,v,w(x)

 .
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Now we turn to show the derivative of the conditional variance and covariance
of the sufficient statistics of each dyad are bounded. Given Y = y, for all
{i} ⊂ {1, . . . , p}, si,v,w(X) are conditionally independent across {v, w} ⊆ N.
Then we have

Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

= E [si,v,w(X) sj,v,w(X) |Y = y]− E [si,v,w(X) |Y = y]E [sj,v,w(X) |Y = y]

= Pθ (si,v,w(X) = 1, sj,v,w(X) = 1 |Y = y)− Pi,v,w(θ;X,y)Pj,v,w(θ;X,y)

= Pθ

 ∏
l∈Li∪Lj

X(l)
v,w = 1 |Y = y

− Pi,v,w(θ;X,y)Pj,v,w(θ;X,y).

Using the inequality derived in (34) and suppressing the notation of {v, w} and
(X,y) in Pi,v,w(θ;X,y), the derivative of the covariance with respect to θk,
k = 1, . . . , p is given by∣∣∣∣ ∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣

=

∂ Pθ

 ∏
l∈Li∪Lj

X(l)
v,w = 1 |Y = y


∂ θk

− ∂ Pi(θ)

∂ θk
Pj(θ)− Pi(θ)

∂ Pj(θ)

∂ θk

≤ 2.

Using the same inequality and notation in (34), the derivative of the variance
of a Bernoulli random variable si,v,w(X) is given by∣∣∣∣ ∂ Vθ(si,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣ =

∣∣∣∣ (1− 2Pi(θ))
∂ Pi(θ)

∂ θk

∣∣∣∣ ≤ 1.

Finally, for {i, j} ⊆ {1, . . . , p} and k ∈ {1, . . . , p}, we obtain∣∣∣∣ ∂2 (∇θ ℓ(θ;x,y))i
∂ θj ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Cθ(si(X), sj(X) |Y = y)

∂ θk

∣∣∣∣
≤

∑
{v,w}⊂N

∣∣∣∣∂ Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y)

∂ θk

∣∣∣∣
≤ 2 ||y||1

due to the fact that Cθ(si,v,w(Xv,w), sj,v,w(Xv,w) |Y = y) = 0 when Yv,w = 0
for {v, w} ⊂ N. Similarly, Vθ(si,v,w(Xi,v,w) |Y = y) = 0 when Yv,w = 0 for
{v, w} ⊂ N, and when i = j ∈ {1, . . . , p} and k ∈ {1, . . . , p}, we have∣∣∣∣ ∂2 (∇θ ℓ(θ;x,y))i

∂ θi ∂ θk

∣∣∣∣ =

∣∣∣∣ ∂ Vθ(si(X) |Y = y)

∂ θk

∣∣∣∣
≤ ||y||1.
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Table 4
P-values of the Zhou-Shao’s test for multivariate normality of θ̃ for 6 model-generating
parameters (θ⋆

1 , θ
⋆
2 , θ

⋆
3 , θ

⋆
4 , θ

⋆
5 , θ

⋆
6) estimated from 250 network samples at size 1000 on

four basis network structures. All p-values are larger than .1.

Basis network model θ⋆
1 θ⋆

2 θ⋆
3 θ⋆

4 θ⋆
5 θ⋆

6
Dense Bernoulli .138 .473 .053 .699 .587 .983
Sparse Bernoulli .554 .132 .232 .634 .904 .373
SBM .650 .891 .982 .975 .871 .674
LSM .859 .831 .500 .227 .613 .409

Appendix H: Additional simulation results

Additional simulation results that enhance those contained in Section 5 are
provided in this section.

H.1. Normal approximation with different basis networks

The multivariate normality of θ̃ is tested by Zhou-Shao’s multivariate normal
test [46], and the p-values are provided in tabel 4. Q-Q plots of θ̃ estimated from
6 different model-generating parameters with a dense Bernoulli basis network, a
sparse Bernoulli basis network, a stochastic block model (SBM) generated basis
network, and a latent space model (LSM) generated basis network are shown in
Figure 6, 7, 8 and 9, respectively.

pval: 0.5556 pval: 0.3082 pval: 0.5395 pval: 0.2496 pval: 0.3278 pval: 0.3999

pval: 0.3723 pval: 0.3169 pval: 0.8897 pval: 0.7626 pval: 0.0812 pval: 0.8181

pval: 0.4733 pval: 0.6547 pval: 0.3731 pval: 0.4046 pval: 0.7636 pval: 0.651

pval: 0.7936 pval: 0.7363 pval: 0.8739 pval: 0.5261 pval: 0.4257 pval: 0.0263

pval: 0.5647 pval: 0.9647 pval: 0.2734 pval: 0.7357 pval: 0.5453 pval: 0.6029

pval: 0.4062 pval: 0.7046 pval: 0.4411 pval: 0.8176 pval: 0.7387 pval: 0.6041

Q-Q plots of each component of the MPLE (dense Bernoulli basis network)

Fig 6: Q-Q plots and p-values of six components of θ̃ estimated from 250 mul-
tilayer network samples at size 1000 on the dense Bernoulli basis network for 6
model-generating parameters on each row.
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pval: 0.8169 pval: 0.7875 pval: 0.4645 pval: 0.5936 pval: 0.2668 pval: 0.325

pval: 0.959 pval: 0.0563 pval: 0.7538 pval: 0.2353 pval: 0.3841 pval: 0.6311

pval: 0.7361 pval: 0.9825 pval: 0.1513 pval: 0.7628 pval: 0.7382 pval: 0.5082

pval: 0.5855 pval: 0.9465 pval: 0.374 pval: 0.7076 pval: 0.3703 pval: 0.3959

pval: 0.2049 pval: 0.6863 pval: 0.1898 pval: 0.6606 pval: 0.9389 pval: 0.5986

pval: 0.4939 pval: 0.4967 pval: 0.5277 pval: 0.8994 pval: 0.3746 pval: 0.6405

Q-Q plots of each component of the MPLE (sparse Bernoulli basis network)

Fig 7: Q-Q plots and p-values of six components of θ̃ estimated from 250 mul-
tilayer network samples at size 1000 on the sparse Bernoulli basis network for 6
model-generating parameters on each row.

pval: 0.4025 pval: 0.4728 pval: 0.5469 pval: 0.4469 pval: 0.4584 pval: 0.6927

pval: 0.5483 pval: 0.8666 pval: 0.0978 pval: 0.2303 pval: 0.032 pval: 0.1081

pval: 0.7454 pval: 0.7709 pval: 0.5528 pval: 0.2467 pval: 0.9868 pval: 0.6189

pval: 0.8385 pval: 0.9773 pval: 0.5026 pval: 0.9379 pval: 0.723 pval: 0.8256

pval: 0.1547 pval: 0.5289 pval: 0.0688 pval: 0.2216 pval: 0.0451 pval: 0.0241

pval: 0.3032 pval: 0.2986 pval: 0.7119 pval: 0.2415 pval: 0.3245 pval: 0.7165

Q-Q plots of each component of the MPLE (SBM basis network)

Fig 8: Q-Q plots and p-values of six components of θ̃ estimated from 250 mul-
tilayer network samples at size 1000 on the SBM generated basis network for 6
model-generating parameters on each row.
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Table 5
False discovery rates of four procedures for detecting non-zero effects of six model-generating
parameters (θ⋆

1 , θ
⋆
2 , θ

⋆
3 , θ

⋆
4 , θ

⋆
5 , θ

⋆
6) estimated from 250 multilayer network samples at size

1000 on the sparse Bernoulli basis network. All FDRs are smaller than 0.05.

Procedure θ⋆
1 θ⋆

2 θ⋆
3 θ⋆

4 θ⋆
5 θ⋆

6
Bonferroni .002 .003 .003 .003 .003 .011
Benjamini-Hochberg .020 .011 .022 .022 .014 .017
Hochberg’s .009 .008 .012 .010 .010 .014
Holm’s .007 .008 .011 .009 .006 .014

pval: 0.2178 pval: 0.401 pval: 0.3466 pval: 0.1625 pval: 0.0889 pval: 0.25

pval: 0.8078 pval: 0.6708 pval: 0.4001 pval: 0.4827 pval: 0.602 pval: 0.6994

pval: 0.3151 pval: 0.4208 pval: 0.349 pval: 0.4168 pval: 0.8837 pval: 0.3354

pval: 0.1577 pval: 0.5475 pval: 0.0438 pval: 0.4513 pval: 0.5357 pval: 0.6009

pval: 0.3512 pval: 0.4952 pval: 0.4739 pval: 0.2753 pval: 0.7138 pval: 0.4255

pval: 0.1582 pval: 0.9784 pval: 0.9992 pval: 0.2428 pval: 0.1869 pval: 0.1167

Q-Q plots of each component of the MPLE (LSM basis network)

Fig 9: Q-Q plots and p-values of six components of θ̃ estimated from 250 mul-
tilayer network samples at size 1000 on the LSM generated basis network for 6
model-generating parameters on each row.

H.2. Additional results on the false discovery rate

The false discovery rate (FDR) of the multiple testing correction procedures
of Bonferroni, Benjamini-Hochberg, Hochberg, and Holm to detect non-zero
components of θ⋆ at a family-wise significance level of α = 0.05 with a sparse
Bernoulli basis network, an SBM generated basis network and an LSM gener-
ated basis network are provided in Table 5, 6 and 7, respectively (recall that
components θ⋆1,3 and θ⋆3 of θ⋆ are set to 0). The receiver operating characteristic

(ROC) curves for θ̃ of 6 selected model-generating parameters on four basis
network structures are provided in each of the subplot of Figure 10.
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Table 6
False discovery rates of four procedures for detecting non-zero effects of six model-generating
parameters (θ⋆

1 , θ
⋆
2 , θ

⋆
3 , θ

⋆
4 , θ

⋆
5 , θ

⋆
6) estimated from 250 multilayer network samples at size

1000 on the SBM generated basis network. All FDRs are smaller than 0.05.

Procedure θ⋆
1 θ⋆

2 θ⋆
3 θ⋆

4 θ⋆
5 θ⋆

6
Bonferroni .002 .002 .003 .001 .001 .004
Benjamini-Hochberg .022 .013 .014 .015 .015 .018
Hochberg’s .009 .014 .01 .008 .011 .014
Holm’s .009 .013 .005 .009 .009 .011

Table 7
False discovery rates of four procedures for detecting non-zero effects of six model-generating
parameters (θ⋆

1 , θ
⋆
2 , θ

⋆
3 , θ

⋆
4 , θ

⋆
5 , θ

⋆
6) estimated from 250 multilayer network samples at size

1000 on the LSM generated basis network. All FDRs are smaller than 0.05.

Procedure θ⋆
1 θ⋆

2 θ⋆
3 θ⋆

4 θ⋆
5 θ⋆

6
Bonferroni .004 .006 .000 .005 .003 .004
Benjamini-Hochberg .016 .013 .011 .015 .016 .017
Hochberg’s .009 .014 .009 .011 .010 .011
Holm’s .008 .014 .009 .011 .007 .010
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Fig 10: ROC curves for θ̃ estimated from 250 multilayer network samples at size
1000 of six model-generating parameters on four different basis networks.
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