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a b s t r a c t

The sampling of networks is an important problem at the frontier of statistical network
analysis, and the identification of population members of a network is an important
step in the sampling process. In this work, we study the random time τ to identify
the nodes in an Erdős-Rényi random graph through egocentric sampling We derive the
exact distribution of τ and give an exact formula for computing the mean time Eτ as
a function of the size of the network. We explore how Eτ varies with the size of the
network, the probability of edges, and network sparsity. We establish the scaling of τ

with network size in both sparse and dense random graphs, highlighting special cases
that demonstrate sub-linear scaling of τ with the size of the network. All theoretical
results are non-asymptotic. Lastly, we discuss possible extensions to classes of random
graphs beyond Erdős-Rényi random graphs.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

We consider simple, undirected random graphs denoted by X which are defined on a finite set of N ≥ 2 nodes, which
ithout loss is taken to be the set N = {1, . . . ,N}. We set Xi,j = 1 if nodes i ∈ N and j ∈ N are connected in the graph

and set Xi,j = 0 otherwise, making the standard conventions that Xi,j = Xj,i and Xi,i = 0 (1 ≤ i < j ≤ N).
An important problem at the frontier of statistical network analysis is the sampling of networks (Kolaczyk, 2017),

where an observation process produces an observed subgraph of a larger population graph (Frank, 2005; Handcock and
Gile, 2010). One of the most prevalent sampling designs for network data is egocentric sampling (Perry et al., 2018;
Krivitsky and Morris, 2017), where individual nodes i ∈ N are sampled at random and the edges of each sampled node
are observed, i.e., if node i is sampled then edges Xi,j (j ∈ N \ {i}) are observed. Concretely, an egocentric sample of the
network X based on the random sample of nodes S ⊆ N produces an observed subgraph XS given by

XS = (Xi,j : all {i, j} ⊂ N satisfying S ∩ {i, j} ̸= ∅). (1)

In practice, egocentric sampling of networks is carried out through survey mechanisms which typically report only the
connections of each sampled node i ∈ S in the network, that is the nodes j ∈ N satisfying Xi,j = 1 for each i ∈ S. Due
to the binary sample space of the edge variables, observing all edges connecting nodes i ∈ S to nodes j ∈ N \ {i} in the
graph means we completely observe all edge variables Xi,j between nodes i ∈ S and j ∈ N \ {i}. Egocentric sampling
designs for networks, such as link-tracing, have been used in respondent driven sampling designs as a means to sample
hard-to-reach populations (Gile and Handcock, 2010). Understanding the time it takes to sample and identify nodes in
a population graph can have important implications for studies that employ respondent driving methods for obtaining a
sample from a population.
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We set our problem up as follows. Let π(N) = (π (1), . . . , π (N)) be a random permutation of the node indices
1, . . . ,N). In what follows, we will consider iteratively sampling nodes at random from the set of nodes {1, . . . ,N}.
he random permutation π(N) prescribes a randomized sampling order. Consider an egocentric sample obtained from a
et of sampled nodes S ⊆ N, assuming that sampled nodes i ∈ S are identified. Define

Ei =
{
j ∈ N \ {i} : Xi,j = 1

}
, i = 1, . . . ,N, (2)

to be the nodes in N \ {i} which are connected to node i ∈ N in X . We assume that each node j ∈ Ei is identified. In other
words, Ei represents the data obtained through the egocentric sample of node i. Note that Ei is a random set since X is a
andom graph. It is possible – and generally quite likely – that Ei ̸⊆ S for i ∈ S, as the set Ei may contain nodes which are
not in S since we observe and identify all nodes i ∈ S and all nodes j ∈ N \ S satisfying Xi,j = 1 for any i ∈ S. Throughout,
we assume the identification of all nodes is possible.

We consider iteratively sampling nodes in the node set {1, . . . ,N} at random at discrete time steps t ∈ {1, . . . ,N} by
iterating through the random permutation π(N). For each such sampled node i, we produce a partial observation of the
network Ei by producing an egocentric sample of the network based on node i. We define

N(t) =

[
t⋃

k=1

Eπ (k)

]
∪ {π (1), . . . , π (t)} , t = 1, . . . ,N, (3)

to be the set of nodes identified up to the tth time step, and define

τ = min {t⋆ : N(t⋆) = N} (4)

to be the random time at which all nodes in the graph have been identified through egocentric sampling.

2. The time to identify all of the nodes in an Erdő s-Rényi random graph

We derive the distribution of τ when X is an Erdős-Rényi random graph (Erdős and Rényi, 1959; Gilbert, 1959; Frieze
and Karoński, 2016) and calculate the expected time E τ to identify all nodes in the graph through egocentric sampling
in Theorem 1. An Erdős-Rényi random graph assumes edge variables Xi,j ({i, j} ⊂ N) are mutually independent and
the probability of an edge is specified by a parameter p ∈ (0, 1), i.e., P(Xi,j = 1) = p for all {i, j} ⊂ N. We will here
consider homogeneous Erdős-Rényi random graphs for ease of presentation, but note that the methods we employ could
be extended to inhomogeneous Erdős-Rényi random graphs and other classes of random graphs. Fig. 1 visualizes values
of E τ for various edge probabilities and over a range of network sizes. The effect of network sparsity on the distribution
of τ is discussed in Section 2.1 and visualized in Fig. 2. Of note, both Figs. 1 and 2 suggest a sub-linear scaling of E τ with
N , in certain scenarios. This phenomena is explored rigorously in the next section.

Theorem 1. Let X be an Erdős-Rényi random graph defined on the set of nodes N = {1, . . . ,N} with edge probability
p ∈ (0, 1) and let τ be defined as in (4). Then the distribution of τ is given by

P(τ ≤ t) =
[
1 − (1 − p)t

]N−t
, 1 ≤ t ≤ N.

The expected time to identify all nodes in the random graph via egocentric sampling is given by

E τ = N + 1 −

N∑
t=1

[1 − (1 − p)t ]N−t .

Proof of Theorem 1. We first prove the distribution of τ . Consider iteratively sampling nodes in {1, . . . ,N} at random.
It suffices to construct a random permutation of the node indices (1, . . . ,N) denoted by π(N) = (π (1), . . . , π (N)) and
iterate through π(N), observing the edges each node π (t) is connected to at step t ≥ 1, i.e., observing the random set
Eπ (t). At step t , we have sampled nodes π (1), . . . , π (t), and have therefore identified each such node. The remaining
nodes N \ {π (1), . . . , π (t)} are identified at step t if, for each node v ∈ {π (t + 1), . . . , π (N)}, at least one of the nodes
π (1), . . . , π (t) is connected to v in X . For each v ∈ {π (t + 1), . . . , π (N)}, let At,v be the event none of the nodes
π (1), . . . , π (t) are connected to v. The probability of event At,v is then given by

P(At,v) = P
(
Xπ (1),v = 0, . . . , Xπ (t),v = 0

)
=

t∏
k=1

P
(
Xπ (k),v = 0

)
= (1 − p)t , (5)

owing to the independence of edge variables in an Erdős-Rényi random graph and since P(Xi,j = 1) = p ∈ (0, 1) for all
pairs of nodes {i, j} ⊂ N. The event τ ≤ t occurs if and only if the event Ac

t,π (t+1) ∩ . . . ∩Ac
t,π (N) occurs, i.e., every node in
{π (t + 1), . . . , π (N)} must be connected in X to at least one node in {π (1), . . . , π (t)} for the event τ ≤ t to occur. Note

2



J.R. Stewart Statistics and Probability Letters 195 (2023) 109779

e

Fig. 1. Plot of the mean time to observe all nodes in the network as a function of the network size N and the change in mean times for various
dge probabilities.

Fig. 2. Plot of the mean time to observe all nodes in the network as a function of the network size N and the change in mean times across various
levels of network sparsity.

that the events At,π (t+1), . . . ,At,π (N) are independent events because each depends on non-overlapping subsets of edge
variables in X and edge variables are independent in an Erdős-Rényi random graph. Thus,

P
(
Ac

t,π (t+1) ∩ . . . ∩ Ac
t,π (N)

)
=

N−t∏
k=1

P
(
A

c
t,π (t+k)

)
=

N−t∏
k=1

[1 − (1 − p)t ] = [1 − (1 − p)t ]N−t .

The distribution of τ is derived to be

P(τ ≤ t) = [1 − (1 − p)t ]N−t , 1 ≤ t ≤ N.

Since τ is a non-negative stopping time, we compute directly

E τ =

N∑
t=0

P(τ > t) =

N∑
t=0

(1 − P(τ ≤ t)) = 1 +

N∑
t=1

(
1 − [1 − (1 − p)t ]N−t)

= N + 1 −

N∑
t=1

[1 − (1 − p)t ]N−t . □

2.1. Effect of network sparsity on τ

Sparsity in networks refers to the scaling of edge probabilities with the network size, in which case the edge
probabilities p are a function of N , which we denote by p(N) throughout this section. The dense graph regime refers to the
case when p(N) ∝ 1, i.e., when the edge probability p(N) is constant as a function of N , which implies the expected number
of edges in the network is of order N2. The sparse graph regime corresponds to scenarios where the edge probability p(N)
decreases as a function of N , typically monotonically. There are a number of special cases of interest. When p(N) ∝ N−1,
Le Cam’s theorem can be used to demonstrate the Poisson distribution as the limiting distribution for node degrees in an
3
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rdős-Rényi random graph, in which case the expected number of connections a given node has is bounded. The extreme
ase when p(N) ∝ N−2 corresponds to the case when the graph has a bounded expected number of edges. The evolution
f sparse Erdős-Rényi random graphs has been extensively studied (Erdős and Rényi, 1960; Frieze and Karoński, 2016).
The effect of sparsity on the time to observe all nodes in a graph through egocentric sampling can be studied through

heorem 1 by replacing p with p(N) and computing the mean times E τ as a function of N . This is done in Fig. 2 for the
cases when p(N) = .2N−r , varying r ∈ {0, 1/4, 1/3, 1/2, 1}. As mentioned above, the case when r = 1 corresponds
to the scaling p(N) ∝ N−1, for which the expected node degrees are bounded (from above and below). This implies that
the expected number of nodes reported and identified in the egocentric sampling of any given node would likewise be
bounded in expectation. The resulting mean time E τ scales approximately with N in this case (shown in Fig. 2), with
exact scaling confirmed rigorously in Theorem 2 in the next section. When r < 1, the mean degrees of nodes tend to
infinity with N . However, larger values of r correspond to slower rates of growth for the expected degrees, the impact of
which is shown in the ordering of the mean times in Fig. 2 with respect to the level of network sparsity.

3. The scaling of τ as a function of N

The scaling of τ (under a probability guarantee) is established in Theorem 2, confirming the sub-linear growth of τ

with N suggested in Figs. 1 and 2 in certain scenarios. Of particular interest, we demonstrate that in the dense graph
regime where p is fixed, τ scales logarithmically in N . In the sparse graph regime, we have related the scaling of τ to the
ratio (logN) / p. When p ∼ N−r (0 < r < 1), we have (logN) / p ∼ N r logN , showing the faster scaling due to network
sparsity as visualized in Fig. 2. When r = 1, the scaling of N logN is too fast, noting that P(τ ≤ N) = 1. Theorem 2
confirms the linear scaling of τ with N , implied in Fig. 2, in this case.

Theorem 2. Consider an Erdős-Rényi random graph with edge probability p ∈ (0, 1) bounded away from 1. Then there exists,
for each δ ∈ (0, 1), constants N0 ≥ 2 and C1, C2 > 0 such that, for all N ≥ N0,

P
(
C2 min

{
N,

logN
p

}
≤ τ ≤ C1 min

{
N,

logN
p

})
≥ δ.

roof of Theorem 2. From Theorem 1, the distribution of τ is given by

P(τ ≤ t) = [1 − (1 − p)t ]N−t , t = 1, . . . ,N.

For numbers a, b ∈ R,

P(a ≤ τ ≤ b) ≥ P(τ ≤ b) − P(τ ≤ a),

noting that τ ∈ {1, . . . ,N} is a discrete valued stopping time. Let δ ∈ (0, 1). It suffices to find δ1, δ2 ∈ (0, 1) such that
δ = δ1 − δ2 ∈ (0, 1) satisfying P(τ ≤ b) ≥ δ1 and P(τ ≤ a) ≤ δ2 in order to show P(a ≤ τ ≤ b) ≥ δ. We demonstrate a
ufficient condition for t > 0 in order to ensure P(τ ≤ t) ≥ δ1 for a given δ1 ∈ (0, 1). Write

P(τ ≤ t) =
[
1 − (1 − p)t

]N−t
=

[
1 −

(
1 −

p t
t

)t
]N−t

≥ (1 − e−p t )N−t
≥ 1 − (N − t) e−pt ,

irst using the inequality

1 −

(
1 −

x
n

)n
≥ 1 − e−x implied from e−x

≥

(
1 −

x
n

)n
(valid for x ∈ (0, n)),

nd then using Bernoulli’s inequality (1 − x)k ≥ 1 − kx (valid for x ∈ (0, 1) and k a positive integer). It suffices for
− (N − t) e−pt

≥ δ1 to ensure P(τ ≤ t) ≥ δ1. Re-arranging, we obtain 1− δ1 ≥ (N − t) e−p t . Noting N e−p t
≥ (N − t) e−p t ,

t suffices for 1− δ1 ≥ N e−p t . Taking the logarithm of both sides and re-arranging, we obtain p t ≥ logN + | log(1 − δ1)|,
oting δ1 ∈ (0, 1) so that log(1 − δ1) < 0. This yields the equation

t ≥
logN
p

(
1 +

| log(1 − δ1)|
logN

)
.

ote that 1 + | log(1 − δ1)| / logN is monotonically decreasing in N . Let U = 1 + | log(1 − δ1)| / log 2 > 0. Then

1 +
| log(1 − δ1)|

logN
≤ 1 +

| log(1 − δ1)|
log 2

= U, for all N ≥ 2.

It therefore suffices for t ≥ (U logN) / p. As P(τ ≤ N) = 1, there exists C1 > 0 independent of N (but dependent on choice
of δ1) such that

P
(

τ ≤ C1 min
{
N,

logN
})

≥ δ1.
p
4
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e next demonstrate a sufficient condition for t > 0 in order to ensure P(τ ≤ t) ≤ δ2 for a given δ2 ∈ (0, 1). We want

P(τ ≤ t) =
[
1 − (1 − p)t

]N−t
≤ δ2.

aking the logarithm of both sides, we get (N − t) log(1 − (1 − p)t ) ≤ log δ2. Using the inequality log(1 + x) ≤ x,

(N − t) log(1 − (1 − p)t ) ≤ −(N − t) (1 − p)t .

t therefore suffices for −(N − t) (1 − p)t ≤ log δ2 to ensure P(τ ≤ t) ≤ δ2. Multiplying by −1 and dividing by N ,

(1 − p)t
(
1 −

t
N

)
≥

| log δ2|

N
.

It must be that t < N for the left-hand side to be positive, in line with the absolute bound on τ implied by P(τ ≤ N) = 1.
aking logarithm of both sides again,

t log(1 − p) + log
(
1 −

t
N

)
≥ log | log δ2| − logN.

Take t ≤ (1 − e−1)N . As log(1 − t /N) is monotonically decreasing in t , we have the bound log(1 − t /N) ≥ −1 provided
t ≤ (1 − e−1)N , in which case it suffices for t log(1 − p) − 1 ≥ log | log δ2| − logN . Multiplying by −1 and re-arranging,

t ≤
logN − 1 − log | log δ2|

| log(1 − p)|
. (6)

e next lower bound the right-hand side of (6):

logN − 1 − log | log δ2|

| log(1 − p)|
=

logN
| log(1 − p)|

(
1 −

1 + log | log δ2|

logN

)
≥

(1 − p) logN
p

(
1 −

1 + log | log δ2|

logN

)
,

here the inequality follows from the inequality −x / (1 − x) ≤ log(1 − x) (x ∈ (0, 1)) so that | log(1 − p)| ≤ p / (1 − p).
Since (1 + log | log δ2|) / logN ↓ 0 as N → ∞, there exists N0 ≥ 2 and L > 0 such that, for all N ≥ N0,

(1 − p)
(
1 −

1 + log | log δ2|

logN

)
≥ L,

owing to the fact that p is assumed bounded away from 1. It therefore suffices for t ≤ min{(L logN) / p, (1 − e−1)N},
howing there exists N0 ≥ 2 and C2 > 0 independent of N (but dependent on choice of δ2) such that, for all N ≥ N0,

P
(

τ ≤ C2 min
{
N,

logN
p

})
≤ δ2.

As the choice of δ1 ∈ (0, 1) and δ2 ∈ (0, 1) in the above was arbitrary, we have shown there exists, for each δ ∈ (0, 1),
onstants N0 ≥ 2 and C1, C2 > 0 such that, for all N ≥ N0,

P
(
C2 min

{
N,

logN
p

}
≤ τ ≤ C1 min

{
N,

logN
p

})
≥ δ,

rovided p ∈ (0, 1) is bounded away from 1. □

. Discussion

We have characterized the time it takes to identify the nodes in an Erdős-Rényi random graph through egocentric
ampling in both dense and sparse graph settings. Networks we encounter in our world are generally not Erdős-Rényi
andom graphs. However, our results can provide conservative estimates in certain settings. For example, social networks
ften exhibit positive transitivity (i.e., a stochastic proclivity towards triangle motifs) (Holland and Leinhardt, 1972;
tewart et al., 2019), a phenomena also found in other networks (Schweinberger et al., 2020). In these cases, it is possible
o find lower and upper bounding probabilities for the conditional probabilities of edges (Butts, 2011), thus providing a
ethod to bound densities and probabilities of random graphs using Erdős-Rényi random graphs. Such techniques provide
means of establishing conservative estimates of Eτ and its distribution in certain settings, offering the ability to extend

insights developed in this work to other classes of random graphs beyond Erdős-Rényi random graphs.
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