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Abstract. Exponential-family Random Graph Models (ERGMs) constitute
a large statistical framework for modeling dense and sparse random graphs
with short- or long-tailed degree distributions, covariate effects and a wide
range of complex dependencies. Special cases of ERGMs include network
equivalents of generalized linear models (GLMs), Bernoulli random graphs,
β-models, p1-models and models related to Markov random fields in spatial
statistics and image processing. While ERGMs are widely used in practice,
questions have been raised about their theoretical properties. These include
concerns that some ERGMs are near-degenerate and that many ERGMs are
non-projective. To address such questions, careful attention must be paid to
model specifications and their underlying assumptions, and to the inferen-
tial settings in which models are employed. As we discuss, near-degeneracy
can affect simplistic ERGMs lacking structure, but well-posed ERGMs with
additional structure can be well-behaved. Likewise, lack of projectivity can
affect non-likelihood-based inference, but likelihood-based inference does
not require projectivity. Here, we review well-posed ERGMs along with
likelihood-based inference. We first clarify the core statistical notions of
“sample” and “population” in the ERGM framework, separating the process
that generates the population graph from the observation process. We then
review likelihood-based inference in finite, super and infinite population sce-
narios. We conclude with consistency results, and an application to human
brain networks.
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1. INTRODUCTION

The statistical analysis of network data is an emerg-
ing area of statistics with applications in epidemiology
(e.g., disease-transmission networks), neuroscience (e.g.,
human brain networks), political science (e.g., insurgen-
cies, terrorist networks), economics (e.g., financial mar-
kets), sociology (e.g., social networks) and computer sci-
ence (e.g., Facebook, Twitter) (Kolaczyk, 2009). The
key to the statistical analysis of network data is the de-
velopment of random graph models. There is a large
and growing body of literature on random graph mod-
els (Goldenberg et al., 2009, Fienberg, 2012, Hunter,
Krivitsky and Schweinberger, 2012, Salter-Townshend
et al., 2012), including exchangeable random graph mod-
els (e.g., Diaconis and Janson, 2008, Bickel and Chen,
2009, Cai, Campbell and Broderick, 2016, Caron and
Fox, 2017, Janson, 2018, Crane and Dempsey 2018, 2020,
Crane, 2018); stochastic block models (e.g., Nowicki and
Snijders, 2001, Bickel and Chen, 2009, Rohe, Chatterjee
and Yu, 2011); latent space models (e.g., Hoff, Raftery
and Handcock, 2002, Schweinberger and Snijders, 2003,
Handcock, Raftery and Tantrum, 2007, Sewell and Chen,
2015); and many other random graph models (e.g., Hoff
2005, 2020, Rastelli, Friel and Raftery, 2016, Fosdick
et al., 2019). Most such models seek to address the twin
challenges of modeling complex and dependent network
data: the presence of heterogeneity (different subgraphs
may have different properties) and dependence (the pres-
ence or absence of an edge may be dependent upon the
presence or absence of other edges in the graph). The lat-
ter, dependence, has proven to be the more challenging of
the two. Indeed, network data can exhibit a wide range
of complex dependencies, the most famous of which is
triadic closure or transitivity (e.g., Wasserman and Faust,
1994), which has been found in human brain networks
(e.g., Simpson, Moussa and Laurienti, 2012, Sinke et al.,
2016, Obando and De Vico Fallani, 2017), social net-
works (Holland and Leinhardt 1970, 1972, 1976), and
other network data. Other examples include degree het-
erogeneity (Hunter, 2007) and suppression of short chord-
less cycles (Bearman, Moody and Stovel, 2004). We fo-
cus here on models designed to capture a wide range of
complex dependencies, including—but not limited to—
transitivity.

A broad statistical framework that has turned out to
be useful for testing and modeling complex dependen-
cies in areas as diverse as physics, neuroscience, artifi-
cial intelligence, spatial statistics and other areas of statis-
tics are exponential-family models for dependent random
variables (Barndorff-Nielsen, 1978, Brown, 1986). Such
models have long been used in statistics and related areas,
classic examples being Ising models in physics (Ising,
1925) and discrete Markov random fields in spatial statis-
tics (Besag, 1974, Cressie, 1993, Stein, 1999) and ma-
chine learning (e.g., Ravikumar, Wainwright and Lafferty,
2010, Yang et al., 2015). In the network science literature,
exponential-family models for dependent random vari-
ables are known as Exponential-family Random Graph
Models (ERGMs) (Frank and Strauss, 1986, Wasserman
and Pattison, 1996, Lusher, Koskinen and Robins, 2013,
Harris, 2013). These models are versatile and, when prop-
erly specified, are capable of modeling dense and sparse
random graphs with short- or long-tailed degree distri-
butions, covariate effects and a wide range of complex
dependencies (e.g., Lusher, Koskinen and Robins, 2013,
Harris, 2013). Some notable special cases of ERGMs in-
clude:

• network equivalents of GLMs (McCullagh and Nelder,
1983), including network logistic regression and other
forms of network regression (Krackhardt, 1988);

• Bernoulli random graphs (Gilbert, 1959, Erdős and
Rényi 1959, 1960);

• categorical data models (e.g., U|MAN models,
Wasserman and Faust, 1994);

• β-models (Chatterjee, Diaconis and Sly, 2011);
• p1-models (Holland and Leinhardt, 1981);
• canonical exponential-family models with Markov de-

pendence (Frank and Strauss, 1986), which are re-
lated to Ising models in physics (Ising, 1925), Markov
logic networks in artificial intelligence (Richardson
and Domingos, 2006), Markov random fields in spa-
tial statistics (Besag, 1974, Cressie, 1993, Stein, 1999),
and undirected graphical models (e.g., Lauritzen, 1996,
Ravikumar, Wainwright and Lafferty, 2010);

• curved exponential-family models (Snijders et al.,
2006, Hunter and Handcock, 2006, Hunter, Goodreau
and Handcock, 2008), which are curved exponential
families in the sense of Efron (1975, 1978).

The advantages of exponential-family representations
of random graph models are many. Some of the more im-
portant ones are:

1. Language. Exponential families provide a conve-
nient language for formulating ideas about network data
and dependencies therein. In so doing, the language of ex-
ponential families facilitates the construction of models
for complex and dependent network data.
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2. Unifying statistical framework. The exponential-
family framework is a unifying statistical framework that
includes a wide range of random graph models. The uni-
fying exponential-family framework has computational,
theoretical and practical advantages.

3. Computational advantages. Exponential families
have useful convexity properties: for example, the natu-
ral parameter space of exponential families is a convex
set and the negative loglikelihood function is a strictly
convex function on the interior of the natural parameter
space (Brown, 1986). These convexity properties imply
that maximum likelihood estimation of natural parame-
ters is a convex minimization program with a unique so-
lution, provided there exists a solution (Handcock, 2003,
Rinaldo, Fienberg and Zhou, 2009). In addition, expo-
nential families admit data reduction by sufficiency, and
exponential-family likelihood functions depend on the
data only through minimal sufficient statistics (Fisher,
1934). As a consequence, likelihood-based estimation
algorithms are agnostic to the structure of the sample
space of network data—which can be a large and discrete
set—as long as observed and expected minimal suffi-
cient statistics can be computed exactly or approximately
(Krivitsky and Butts, 2017). Thus, the unifying statis-
tical framework helps design statistical algorithms that
can estimate a wide range of random graph models with
exponential-family representations, and helps implement
them in user-friendly statistical software. In fact, there
are 20 ERGM-related R packages,1 with tens of thou-
sands of downloads a month among them. It is worth not-
ing that likelihood-based methods require approximations
of the likelihood function when it is intractable (a prob-
lem shared with discrete Markov random fields in spa-
tial statistics and machine learning), but there are multi-
ple general-purpose methods for approximate likelihood-
based inference (see Section 1.2.1).

4. Theoretical advantages. Among the theoretical ad-
vantages is the fact that the exponential-family framework
helps construct statistical theory for a wide range of ran-
dom graph models that have exponential-family represen-
tations. The seminal work of Berk (1972) and Portnoy
(1988) and others demonstrates that statistical theory is
easier for exponential families than non-exponential fam-
ilies, and statistical theory for dependent network data is
likewise facilitated by exponential families (as demon-
strated in Section 3.1 of Schweinberger and Stewart,
2020). Network data are complex enough, and it there-
fore makes sense to keep statistical theory as simple as
possible. The exponential-family framework enables the-
oreticians to do so.

1The 20 ERGM-related R packages found at CRAN.R-
project.org: Bergm, blkergm, btergm, dnr, Epi-
Model, ergm, ergm.count, ergm.ego, ergm.graphlets,
ergm.rank, ergm.userterms, ergmharris, fergm, GERGM,
gwdegree, hergm, mlergm, statnetWeb, tergm and xergm.

5. Practical advantages. Among the practical advan-
tages is the fact that ERGMs include GLMs for inde-
pendent network data—for example, logistic regression
models for network data—as special cases and may be
viewed as GLMs for independent as well as dependent
network data. Many network scientists are familiar with
logistic regression models, which facilitates the interpre-
tation of results, in that estimates of parameters may be
interpreted in terms of conditional log odds and log odds
ratios (e.g., Hunter, 2007, Lusher, Koskinen and Robins,
2013, Stewart et al., 2019).

In addition, exponential-family models can be used as
building blocks to construct more complex models, for
example, by using them as building blocks in stochastic
block models to capture transitivity and other complex de-
pendencies within blocks (Schweinberger and Handcock,
2015).

In contrast to latent space models (e.g., Hoff, Raftery
and Handcock, 2002) and other latent variable models,
ERGMs specify dependence by incorporating network
features as sufficient statistics, providing a direct link be-
tween the structural properties on which network science
theories are based (Wasserman and Faust, 1994) and the
resulting models. By contrast, most latent variable models
represent dependence among edges as the result of under-
lying heterogeneity in edge probabilities (represented by
latent structure), in some cases making interpretation less
direct. While both approaches have useful applications
and can be combined, the ability to directly and parsi-
moniously model dependencies of scientific interest helps
explain the popularity of Ising models in physics and
ERGMs in network science. Indeed, well-posed ERGMs
have found widespread application, ranging from the
study of the human brain (e.g., Simpson, Moussa and
Laurienti, 2012, Sinke et al., 2016, Obando and De Vico
Fallani, 2017) and epidemics (e.g., Groendyke, Welch
and Hunter, 2012) to differential privacy (e.g., Karwa,
Krivitsky and Slavković, 2017), transient structure in
intrinsically disordered proteins (Grazioli, Martin and
Butts, 2019) and networks of radical environmentalists
(Almquist and Bagozzi, 2019).

While ERGMs are widely used in practice, questions
have been raised about their theoretical properties. To a
large extent, these questions reflect a lack of clarity about
the construction of ERGMs and their underlying assump-
tions, and the inferential settings in which ERGMs are
employed. ERGMs may be used, among other things, to
draw conclusions about the state of a single graph based
on sampled subgraphs; the nature of a generative pro-
cess that produces graphs of fixed size; or the properties
of a generative process that produces graphs of arbitrary
size. These scenarios are distinct, and have implications
for both model specification and inference. The main goal
of our paper is to clarify these distinct uses, with an eye
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to facilitating more principled inference. We argue that
concerns raised about the applications of ERGMs can be
addressed by paying close attention to model specifica-
tions and their underlying assumptions, along with the in-
ferential settings in which models are used. We review
likelihood-based inference for well-posed ERGMs in fi-
nite, super and infinite population scenarios along with
consistency and asymptotic normality results, and demon-
strate likelihood-based inference in super population sce-
narios by an application to human brain networks.

1.1 Outline

To prepare the ground for the remainder of our paper,
we first describe and address two questions that have been
raised about the theoretical properties of ERGMs, stem-
ming from the observation that some ERGMs are near-
degenerate and that many ERGMs are non-projective. A
close examination of these questions demonstrates the
need for proper statistical language to clarify the core
statistical notions of “sample” and “population” in the
ERGM framework, and shows that a failure to use proper
statistical language may result in misleading statistical
conclusions. In the remainder of the paper, we therefore
provide a review of ERGMs that:

• introduces exponential-family parameterizations of
random graph models (Section 2);

• describes and addresses two questions that have been
raised about the theoretical properties of ERGMs
(Section 3), concerning model near-degeneracy (Sec-
tion 3.1) and projectivity (Section 3.2);

• reviews ERGMs with additional structure, which helps
construct ERGMs with attractive theoretical properties
(Section 4);

• clarifies the core statistical notions of “sample” and
“population” in the ERGM framework (Section 5), sep-
arating the complete-data generating process (the pro-
cess that generates the population graph: Section 5.1)
from the incomplete-data generating process (the ob-
servation process: Section 5.2);

• distinguishes statistical inference for graphs of fixed
size, including finite and super population inference,
and statistical inference for sequences of graphs of in-
creasing size (Section 5);

• describes likelihood-based inference given incomplete
data, generated by ignorable incomplete-data generat-
ing processes (Section 6);

• discusses consistency and asymptotic normality of
likelihood-based estimators in finite, super and infinite
population scenarios (Section 7);

• demonstrates likelihood-based inference for well-posed
ERGMs in super population scenarios by an applica-
tion to human brain networks (Section 8).

1.2 Topics Not Covered

The study of ERGMs is a rich area of statistical network
analysis, with many computational and statistical topics
that could be addressed. As we focus on the specification
of well-posed ERGMs and accompanying inference sce-
narios, there are many other issues that space does not al-
low us to address. Here, we mention some of these topics,
along with pointers to related work.

1.2.1 Computational methods for ERGMs. We do not
cover computational methods for ERGMs, because com-
putational issues are separable from the theoretical is-
sues discussed here, and discussions can be found else-
where in the literature. Many computational methods for
ERGMs are closely related to computational methods for
other discrete exponential-family models for dependent
random variables, such as Ising models in physics and
discrete Markov random fields in spatial statistics and ma-
chine learning. While discrete exponential-family mod-
els for dependent random variables come in countless
forms and shapes, many of them pose similar computa-
tional challenges—for example, likelihood functions with
intractable normalizing constants and posteriors with dou-
bly intractable normalizing constants—so similar solu-
tions are applicable to them. Without providing additional
details, we mention here the main classes of computa-
tional approaches that have been explored to date:

• Pseudo-likelihood (Strauss and Ikeda, 1990, Leifeld,
Cranmer and Desmarais, 2018) and composite-
likelihood methods (Asuncion et al., 2010, Krivitsky,
2017), contrastive divergence (Asuncion et al., 2010)
and approximations based on graph limits (He and
Zheng, 2015); note that methods which are not based
on the likelihood function need to be used with caution,
as explained in Section 3.2.2.

• Stochastic approximation methods for maximum like-
lihood estimation (Snijders, 2002, Snijders and van
Duijn, 2002, Jin and Liang, 2013).

• Monte Carlo maximization methods for maximum
likelihood estimation (Geyer and Thompson, 1992,
Handcock, 2003, Hunter and Handcock, 2006,
Hummel, Hunter and Handcock, 2012, Okabayashi
and Geyer, 2012, Yang, Rinaldo and Fienberg, 2014,
Krivitsky, 2017, Byshkin et al., 2018).

• Bayesian Markov chain Monte Carlo methods
(Koskinen, 2004, Møller et al., 2006, Murray, Ghahra-
mani and MacKay, 2006, Caimo and Friel 2011, 2013,
Everitt, 2012, Atchadé, Lartillot and Robert, 2013, Jin,
Yuan and Liang, 2013, Liang and Jin, 2013, Wang and
Atchadé, 2014, Caimo and Mira, 2015, Lyne et al.,
2015, Liang et al., 2016, Park and Haran, 2018).

• Incomplete-data maximum likelihood and Bayesian es-
timation of ERGMs based on sampled data and missing
data (Gile and Handcock, 2006, Handcock and Gile,
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2010, Koskinen, Robins and Pattison, 2010, Snijders,
2010, Pattison et al., 2013, Krivitsky and Morris, 2017,
Karwa, Krivitsky and Slavković, 2017).

• To generate draws of graphs from ERGMs, Markov
chain Monte Carlo (Snijders, 2002, Morris, Handcock
and Hunter, 2008) is the workhorse, though perfect
sampling (Butts, 2018) and non-Markov chain Monte
Carlo approximate sampling approaches (Butts, 2015)
have also been developed.

1.2.2 Mixtures of ERGMs. As we focus on ERGMs
per se, we do not cover random graph models that use
ERGMs as building blocks, such as mixtures of ERGMs.
Most mixtures of ERGMs are finite or infinite mixtures of
Bernoulli random graphs. Examples are:

• Stochastic block models (e.g., Nowicki and Snijders,
2001, Airoldi et al., 2008, Bickel and Chen, 2009,
Bickel, Chen and Levina, 2011, Choi, Wolfe and
Airoldi, 2012, Rohe, Chatterjee and Yu, 2011, Zhao,
Levina and Zhu, 2012, Amini et al., 2013, Lei and
Rinaldo, 2015, Jin, 2015, Gao, Lu and Zhou, 2015,
Zhang and Zhou, 2016, Binkiewicz, Vogelstein and
Rohe, 2017, Sengupta and Chen, 2018).

• Latent space models (e.g., Hoff, Raftery and Handcock,
2002, Schweinberger and Snijders, 2003, Handcock,
Raftery and Tantrum, 2007, Raftery et al., 2012, Salter-
Townshend and Murphy, 2013, Tang, Sussman and
Priebe, 2013, Sewell and Chen, 2015).

• Other latent variable models (e.g., van Duijn, 1995,
van Duijn, Snijders and Zijlstra, 2004, Gill and Swartz,
2004, Hoff 2005, 2008, 2009, 2020, Fosdick and Hoff,
2015, Fosdick et al., 2019).

In many applications of such models, interest centers
on unobserved structure underlying networks, for exam-
ple, unobserved community structure in applications of
stochastic block models. While we do not focus on such
models, many of the issues we discuss—first and fore-
most the inference scenarios reviewed here—may inform
treatment of ERGM mixtures as well.

1.2.3 Exchangeable random graph models and other
models. Various other models have been proposed, such
as exchangeable random graphs—random graphs invari-
ant to the labeling of nodes (Diaconis and Janson, 2008,
Bickel and Chen, 2009) or the labeling of edges (Diaconis
and Janson, 2008, Cai, Campbell and Broderick, 2016,
Janson, 2018, Crane and Dempsey 2018, 2020, Crane,
2018); scale-free networks (e.g., Barabási and Albert,
1999, Bollobás et al., 2001, Willinger, Alderson and
Doyle, 2009); and other random graph models (e.g.,
Rapoport, 1979/80). The literature on such models is large
and diverse, as are their motivations and properties, and
their relationships to ERGMs have not been studied in
depth. We hence do not attempt to treat these models here,

but refer readers to the above-cited papers and other re-
lated literature (e.g., Diaconis and Janson, 2008, Lovász,
2012, Orbanz and Roy, 2015, Veitch, 2015, Caron and
Fox, 2017, Janson, 2018, Lauritzen, Rinaldo and Sadeghi,
2018, Borgs et al., 2019, Veitch and Roy, 2019). However,
we briefly discuss one notable example of exchangeable
random graphs: the edge-exchangeable models of Crane
and Dempsey (2018). Edge-exchangeable models assign
equal probabilities to all edge-labeled graphs which are
isomorphic up to relabeling (Definition 3.1, Crane and
Dempsey, 2018). A special case of the generic modeling
framework was elaborated by Crane and Dempsey (2018):
the so-called “Hollywood model.” The motivating exam-
ple of the Hollywood model concerns actors linked by
movies, although the generic modeling framework is not
restricted to the motivating example. While such models
hold promise, it is an open question whether, and how,
those models can be used to address one of the key chal-
lenges of statistical network analysis: network data are
dependent data, and testing and modeling dependencies
in network data is of great interest. The range of depen-
dencies captured by those models has not been charac-
terized to date, and more research is needed to determine
how such models can be used to test and model complex
dependencies in network data, such as transitivity.

2. EXPONENTIAL-FAMILY PARAMETERIZATIONS OF
RANDOM GRAPH MODELS

To introduce exponential-family parameterizations of
random graph models, which are known as Exponential-
family Random Graph Models (ERGMs), we consider
a finite population of nodes N = {1, . . . ,N} (N ≥ 2).
The nodes i ∈ N may have attributes (e.g., age). We de-
note the collection of attributes of population members
by xN ∈ XN ⊆ R

q . In addition to having attributes, nodes
i ∈ N may be connected to other nodes j ∈ N by edges.
In the simplest case, edges are undirected and self-edges
are excluded, although many of the key ideas we discuss
can be extended to directed edges and self-edges. Edges
between nodes i ∈ N and j ∈ N are considered random
variables and can take on weights, denoted by Yi,j . The
weights of edges Yi,j can take on values in the following
sets:

• Y = {0,1}, where 0 indicates the absence of an edge
and 1 indicates the presence of an edge;

• Y = {0,1, . . . }, where 0,1, . . . are counts of the num-
ber of interactions or other relational events;

• Y = R, indicating financial transactions or other rela-
tional events with real-valued outcomes.

The vast majority of ERGM-related publications fo-
cuses on random graphs Y = (Yi,j )i<j :i,j∈N with sam-

ple spaces of the form YN = {0,1}(|N|
2 ), but there are

ERGMs for random graphs with sample spaces of the
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form YN = {−1,0,1}(|N|
2 ) (Huitsing et al., 2012), YN =

{0,1, . . . }(|N|
2 ) (Krivitsky, 2012), and YN = R(|N|

2 )

(Desmarais and Cranmer, 2012), as well as random
graphs where edges are ranks (Krivitsky and Butts,
2017), categorical with unordered categories (Robins,
Pattison and Wasserman, 1999) or ordered categories
(Caimo and Gollini, 2020), and multivariate combina-
tions thereof (Pattison and Wasserman, 1999, Lazega and
Pattison, 1999, Krivitsky, Marcum and Koehly, 2019).
In fact, there are entire R packages devoted to ERGMs
for random graphs with sample spaces of the form YN =
{0,1, . . . }(|N|

2 ) and YN = R(|N|
2 ).

To cover random graphs with sample spaces of the form

YN = {0,1}(|N|
2 ), YN = {0,1, . . . }(|N|

2 ), YN = R(|N|
2 ), and

other sample spaces that have been explored in the liter-
ature, we consider exponential families of densities with
respect to a σ -finite reference measure ν with support YN,
specified by a sufficient statistic s : XN ×YN �→R

p and a
map η : �×N �→R

p with � ⊆ {θ ∈R
p : ψ(θ,N) < ∞}:

dPN,η(θ,N)

dν
(yN) = exp

(〈
η(θ ,N), s(xN,yN)

〉 − ψ(θ,N)
)
,

where 〈η(θ,N), s(xN,yN)〉 denotes the inner product of
natural parameter η(θ ,N) and sufficient statistic
s(xN,yN) and

ψ(θ ,N) = log
∫
YN

exp
(〈
η(θ ,N), s

(
xN,y′

N

)〉)
dν

(
y′
N

)
.

To present the key ideas in the simplest possible setting,
we focus henceforth on the simplest and most common
case: exponential-family models of random graphs with

sample spaces of the form YN = {0,1}(|N|
2 ), in which case

PN,η(θ,N)(YN = yN)

= exp
(〈
η(θ ,N), s(xN,yN)

〉 − ψ(θ,N)
)
ν(yN),

where

ψ(θ,N) = log
∑

y′
N∈YN

exp
(〈
η(θ ,N), s

(
xN,y′

N

)〉)
ν
(
y′
N

)
.

All of these quantities can depend on the population of
nodes N.

The generic exponential-family framework may be in-
timidating and the reader may question the high level of
abstraction and generality of the above definition, not the
least the fact that all quantities are allowed to depend on
the population of nodes N. A simple example may help
demonstrate why all quantities can depend on N, and why
it is desirable to allow them to depend on N. Consider the
family of sparse Bernoulli(π|N|) random graphs with size-
dependent edge probabilities π|N| = logit−1(θ − log |N|)
(θ ∈ R), with probability mass function

PN,η(θ,N)(YN = yN)

= exp

⎛
⎝η(θ,N)

∑
i<j : i,j∈N

yi,j − ψ(θ,N)

⎞
⎠ ν(yN),

where the support of the reference measure depends on
N:

ν(yN) =
⎧⎪⎨
⎪⎩

1 if yN ∈ {0,1}(|N|
2 )

0 otherwise,

as do the natural parameter η(θ,N) = θ − log |N| and
ψ(θ,N) = log(1 + exp(θ − log |N|)). In other words,
all quantities depend on the population of nodes N. In-
deed, the dependence on N stems from the offset log |N|,
which induces sparsity in Bernoulli random graphs. We
motivate sparsity and sparsity-inducing Bernoulli(π|N|)
random graphs in Section 3.2. Covariates can be in-
cluded by using the logit link function logit(π|N|) =
θ − log |N| and adding covariate terms, as in logistic re-
gression (McCullagh and Nelder, 1983). Covariate terms
are reviewed in Morris, Handcock and Hunter (2008). Ex-

amples of other ERGMs with support YN = {0,1}(|N|
2 ) can

be found throughout the paper. ERGMs with other forms
of support can be found in the literature cited above.

3. TWO QUESTIONS RAISED ABOUT ERGMS AND
CLARIFICATIONS

Here, we describe two questions that have been raised
about the theoretical properties of ERGMs, discuss the
historical and mathematical context in which those ques-
tions arose, and outline which lessons have been learned
and how the associated issues have been addressed. The
resulting discussion motivates a more careful look at the
specification of ERGMs and inference for ERGMs, which
are discussed in the following sections.

3.1 Question I: Are Non-Trivial ERGMs
Near-Degenerate?

3.1.1 Overview and history. A common concern is
that ERGMs with non-trivial dependence structure can
be ill-behaved, in the sense that ERGMs can be ei-
ther near-degenerate or indistinguishable from Bernoulli
random graphs with, in some cases, a phase transition
between these two regimes (Strauss, 1986, Jonasson,
1999, Häggström and Jonasson, 1999, Handcock, 2003,
Bhamidi, Bresler and Sly, 2008, 2011, Rinaldo, Fien-
berg and Zhou, 2009, Schweinberger, 2011, Butts, 2011,
Chatterjee and Diaconis, 2013, Mele, 2017, Bhamidi
et al., 2018). Both near-degenerate ERGMs and near-
Bernoulli models are problematic as models of network
data: near-degenerate ERGMs concentrate probability
mass on small subsets of graphs, such as near-complete
graphs with almost all possible edges, whereas near-
Bernoulli random graphs induce vanishing dependence.
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These properties render them useless in most applications,
although there are exceptions. One notable exception is
the behavior of some physical systems (e.g., networks of
crystal contacts or amlyoid fibrils), which resembles the
behavior of near-degenerate ERGMs—including the ex-
istence of phase transitions. In such cases, the behavior
of near-degenerate ERGMs can be both realistic and de-
sirable (Grazioli et al., 2019). However, we follow here
convention and treat such behavior as undesirable in most
cases.

The fact that some ERGMs are ill-behaved was first dis-
covered by Strauss (1986), Jonasson (1999) and
Häggström and Jonasson (1999). We discuss the theoret-
ical results of these pioneers in Section 3.1.2 along with
more recent work. In practice, the undesirable properties
of ill-behaved ERGMs went unnoticed at first, in part be-
cause pseudo-likelihood-based methods—which masked
the undesirable properties of ill-behaved ERGMs—were
used to estimate them (Strauss and Ikeda, 1990), and in
part because model assessment tools were unavailable.
The introduction of Markov chain Monte Carlo meth-
ods for generating draws of graphs from ERGMs in the
1990s and 2000s revealed that some models estimated
by maximum pseudo-likelihood methods performed very
poorly (generating, e.g., graphs with almost all possi-
ble edges when estimated from observed graphs with a
moderate number of edges). At the time, this was be-
lieved to be due to poor estimation, and indeed maximum
pseudo-likelihood estimators were shown to be inferior to
maximum likelihood estimators (Dahmström and Dahm-
ström 1993, 1999, Corander, Dahmström and Dahmström
1998, 2002). In time, Monte Carlo maximum likelihood
estimators were developed (Snijders, 2002, Hunter and
Handcock, 2006), along with simulation-based model as-
sessment tools (Hunter, Goodreau and Handcock, 2008).
These developments revealed that, while some of the bad
behavior did stem from inferior estimators, the bad behav-
ior in other cases was inherent to the specified models, as
first pointed out by Snijders (2002) and Handcock (2003)
and anticipated by the work of Strauss (1986), Jonasson
(1999) and Häggström and Jonasson (1999). Since then,
statistical theory has shed more light on those undesirable
properties, and has led to the development of improved
model specifications. We review the existing theoretical
results in Section 3.1.2, and improved model specifica-
tions in Section 3.1.3.

3.1.2 Clarification: Most theoretical results are lim-
ited to simplistic ERGMs that lack structure. Since the
1980s (Strauss, 1986, Jonasson, 1999, Häggström and
Jonasson, 1999), it has been known that some ERGMs
are ill-behaved. However, two important points have been
lost in more recent discussions of ill-behaved ERGMs.
First, almost all theoretical results—discussed below—
are limited to simplistic ERGMs which lack structure

that could restrict interactions among edge variables, and
which have the same number of natural parameters, re-
gardless of how large |N| is. Such simplistic ERGMs re-
semble Ising models in physics without lattice structure or
discrete Markov random fields in spatial statistics without
spatial structure, and are of limited use in understanding
large networks with complex dependence. Theoretical re-
sults based on such models are therefore limited in scope,
and must be interpreted with careful attention to the un-
derlying assumptions. As we shall discuss, most of those
results do not generalize to ERGMs with additional struc-
ture. Indeed, well-posed ERGMs with additional structure
can be well-behaved and are widely used in practice. We
discuss the first point below and the second point in Sec-
tion 3.1.3.

The first theoretical results on ill-behaved ERGMs
were reported by Strauss (1986), Jonasson (1999) and
Häggström and Jonasson (1999). Strauss (1986) pointed
out that the Markov random graphs of Frank and Strauss
(1986), an important class of ERGMs, induce long-range
dependence by allowing each edge variable to interact
with 2(|N| − 2) other edge variables. The long-range de-
pendence is rooted in the lack of structure of those mod-
els: without additional structure, it is difficult to constrain
the range of interactions. If strong homogeneity assump-
tions are imposed on Markov random graphs, long-range
dependence results in strong dependence and model near-
degeneracy: that is, Markov random graphs concentrate
probability mass on a small subset of graphs, for exam-
ple, graphs with almost no edges or almost all possible
edges (Strauss, 1986). Jonasson (1999) and Häggström
and Jonasson (1999) studied the model near-degeneracy
and phase transitions of the triangle model, a special case
of Markov random graphs, and concluded that the model
near-degeneracy of the triangle model is rooted in the
lack of structure of the model. More work on model near-
degeneracy can be found in Schweinberger (2011), Butts
(2011), Chatterjee and Diaconis (2013), Mele (2017), and
Bhamidi et al. (2018), and more work on phase transitions
in Chatterjee and Diaconis (2013), Mukherjee (2013a),
Radin and Yin (2013), Aristoff and Radin (2013), Yin, Ri-
naldo and Fadnavis (2016) and Kenyon and Yin (2017);
some related work on phase transitions in the physics lit-
erature can be found in Park and Newman (2004, 2005).
Handcock (2003) studied the implications of model near-
degeneracy in terms of statistical inference, including the
existence of maximum likelihood and Monte Carlo max-
imum likelihood estimators, and argued that Monte Carlo
maximum likelihood estimators frequently do not exist
due to model near-degeneracy, resulting in computational
failure. Rinaldo, Fienberg and Zhou (2009) investigated
these existence issues in more depth by studying the ge-
ometry of ERGMs. The fact that near-degenerate ERGMs
have regimes that can be approximated by Bernoulli ran-
dom graphs in large random graphs was first pointed out
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by Bhamidi, Bresler and Sly (2008, 2011), with more
work by Chatterjee and Diaconis (2013), Mele (2017) and
Bhamidi et al. (2018).

Despite the insights gained by these theoretical results,
it is important to keep in mind that these results are limited
to simplistic ERGMs that lack structure and have the same
number of natural parameters, regardless of how large |N|
is (with one exception, Schweinberger, 2011, which we
discuss in Section 3.1.3). In particular, these results do
not cover ERGMs with additional structure and ERGMs
for which the number of natural parameters increases with
|N|, which can be better-behaved. A related limitation of
these results is that many real-world settings (e.g., fam-
ilies, school classrooms, local groups of insurgents and
terrorist cells) involve bounded networks with small num-
bers of nodes (e.g., 5–50). In such situations, some “near-
degenerate” model specifications may in fact be well-
behaved. Thus, theoretical results suggesting problematic
behavior must be considered within the context in which
the model is employed (and should checked by simulating
graphs from the model, as advised by Hunter, Goodreau
and Handcock, 2008).

3.1.3 Clarification: Well-posed ERGMs with addi-
tional structure can be well-behaved. The most important
lesson from the theoretical results on simplistic ERGMs is
that ERGMs for large networks need additional structure.
The pioneers (Strauss, 1986, Strauss and Ikeda, 1990,
Jonasson, 1999, Häggström and Jonasson, 1999) under-
stood full well that the undesirable behavior of simplistic
ERGMs is rooted in the lack of structure of those mod-
els, compared with Ising models in physics, which have
additional structure in the form of lattice structure; and
discrete Markov random fields in spatial statistics, which
have additional structure in the form of spatial structure.
To address the lack of structure of simplistic ERGMs,
the pioneers suggested to endow ERGMs with additional
structure. For instance, Strauss and Ikeda (1990) intro-
duced Markov random graphs with observed blocks—
using categorical covariates to partition a set of nodes into
subsets (blocks)—to constrain the dependence of Markov
random graphs to sets of edge variables within blocks,
noting that “Markov models without blocks are unsuitable
for large data sets because of the possibility of degener-
acy” (Strauss and Ikeda, 1990, p. 206). In the special case
of the triangle model, Jonasson (1999) concluded: “the
random triangle model is explosive; depending on q we
get nothing or everything. The important moral of this is
that for any random graph model with transitivity not de-
generate in this sense, the non-degeneracy relies on the
extra, and perhaps unintended, structure imposed on the
graph” (Jonasson, 1999, p. 866).2

2The parameter q mentioned by Jonasson (1999) is equivalent to
q = exp(θ2), where θ2 is the triangle parameter of the triangle model
stated above.

In the ERGM framework, many possible forms of ad-
ditional structure exist, including block structure, multi-
level structure, spatial structure or temporal structure. Ad-
ditional structure can be used to construct well-behaved
ERGMs. We review ERGMs with additional structure in
Section 4. As a motivating example, however, we high-
light one important instance of ERGMs with additional
structure: curved ERGMs with geometrically weighted
model terms (Snijders et al., 2006, Hunter and Handcock,
2006, Hunter, 2007). Curved ERGMs, which are curved
exponential families in the sense of Efron (1975, 1978),
impose additional structure in the form of nonlinear con-
straints on the natural parameter space of the exponen-
tial family (Barndorff-Nielsen, 1978, Brown, 1986). The
additional structure helps construct better-behaved mod-
els. To demonstrate, first consider the ill-behaved trian-
gle model studied by Strauss (1986), Jonasson (1999),
Häggström and Jonasson (1999) and others. The trian-
gle model assumes that the probability mass function of

a population graph YN ∈ {0,1}(|N|
2 ) is of the form

PN,η(θ ,N)(YN = yN)

∝ exp

⎛
⎝θ1

∑
i<j : i,j∈N

yi,j + θ2
∑

i<j<k: i,j,k∈N
yi,j yj,k yi,k

⎞
⎠ ,

where η(θ ,N) = θ ∈ R
2,

∑
i<j : i,j∈N yi,j is the number

of edges, and
∑

i<j<k: i,j,k∈N yi,j yj,k yi,k is the number
of triangles. The triangle model with θ2 > 0 rewards tran-
sitivity by rewarding triangles. While transitivity is an im-
portant feature of many real-world networks (Holland and
Leinhardt 1970, 1972, 1976), the triangle model assumes
that the added value of additional triangles does not de-
crease: the log odds of a graph with a edges and b trian-
gles relative to a graph with a edges and b − 1 triangles
is

log
PN,η(θ ,N)(YN = graph with a edges, b triangles)

PN,η(θ ,N)(YN = graph with a edges, b − 1 triangles)
= θ2.

Note that the log odds does not depend on the number
of triangles in the graph. Indeed, for each pair of nodes,
each additional triangle contributes the same amount to
the log odds of the conditional probability of an edge, re-
gardless of the number of triangles in which the two nodes
are already involved. This, upon reflection, is counterin-
tuitive: it makes little sense for the tenth shared partner
to carry as much weight as the first. Indeed, the assump-
tion that the added value of additional triangles does not
decrease is not without consequences, giving rise to the
undesirable behavior described in Section 3.1.2. To en-
sure that the added value of additional triangles decreases,
curved ERGMs with Geometrically Weighted Edgewise
Shared Partner (GWESP) terms and other model terms
have been developed (Snijders et al., 2006, Hunter and
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FIG. 1. A graphical representation of a connected pair of nodes (represented by two black circles connected by a line), which has 1 edgewise
shared partner (left), 2 edgewise shared partners (middle), and 3 edgewise shared partners (right).

Handcock, 2006, Hunter, 2007). These models assume
that the probability mass function of a population graph

YN ∈ {0,1}(|N|
2 ) is of the form

PN,η(θ ,N)(YN = yN)

∝ exp

⎛
⎝η1(θ ,N)

∑
i<j : i,j∈N

yi,j +
|N|−2∑
m=1

η1+m(θ ,N) sm(yN)

⎞
⎠ ,

where the sufficient statistics of the exponential family are
the number of edges and the number of connected pairs of
nodes with m edgewise shared partners, sm(yN), and the
natural parameters of the exponential family are

η1(θ ,N) = θ1,

η1+m(θ ,N) = θ2 exp(θ3)
[
1 − (

1 − exp(−θ3)
)m]

,

where m = 1, . . . , |N| − 2. A graphical representation of
connected pairs of nodes with 1, 2 and 3 edgewise shared
partners can be found in Figure 1.

If θ2 > 0 and θ3 > 0, the model rewards triangles, but
ensures that the added value of additional triangles de-
creases. To see that, consider a connected pair of nodes
{i, j}. The log odds of a graph where {i, j} has m shared
partners and hence m triangles relative to a graph where
{i, j} has m − 1 triangles is, assuming everything else is
the same, given by

θ2
(
1 − exp(−θ3)

)m−1
, m = 1, . . . , |N| − 2.

In other words, the added value of additional triangles
decays at a geometric rate, provided θ2 > 0 and θ3 > 0.
A graphical representation of the added value of addi-
tional triangles is shown in Figure 2. Curved ERGMs
with geometrically weighted model terms are well-posed
as long as θ3 ≥ 0; note that θ3 ∈ [− log 2,0) implies
that the added value of the m-th triangle either de-
creases or increases, depending on the sign of θ2 and
whether m is even or odd, and that θ3 ∈ (−∞,− log 2)

implies a form of model near-degeneracy when |N| is
large (Schweinberger, 2011). In practice, curved ERGMs
with GWESP terms and other geometrically weighted
model terms have turned out to be well-behaved in a
wide range of settings; selected applications can be found
in Snijders et al. (2006), Hunter and Handcock (2006),
Hunter (2007), Hunter, Goodreau and Handcock (2008),
Goodreau, Kitts and Morris (2009), Gile and Handcock
(2006), Handcock and Gile (2010), Koskinen, Robins and
Pattison (2010), Simpson, Hayasaka and Laurienti (2011),
Suesse (2012), Rolls et al. (2013), Wang et al. (2013),
Obando and De Vico Fallani (2017), Gondal (2018),
Almquist and Bagozzi (2019), and Stewart et al. (2019).
We apply curved ERGMs to human brain network data
in Section 8 to demonstrate some of the benefits that
curved ERGMs can provide in applications, compared
with Bernoulli random graphs and latent space models.

In addition to improved model behavior, there ex-
ist consistency results for curved ERGMs with GWESP

FIG. 2. The added value of the m-th triangle in terms of θ2(1−exp(−θ3))m−1, m = 1,2, . . . . The plots are based on the so-called base parameter
θ2 = 1 and the so-called decay parameter θ3 = 0 (left), θ3 = 0.5 (middle) and θ3 = 1 (right).



636 SCHWEINBERGER, KRIVITSKY, BUTTS AND STEWART

terms and other curved ERGMs. We review consistency
results for curved ERGMs in Section 7. It is worth not-
ing that the results of Chatterjee and Diaconis (2013)
and others do not preclude consistency results for curved
ERGMs: the results of Chatterjee and Diaconis (2013)
are limited to ERGMs which are canonical exponential
families with a fixed number of natural parameters of the
form ηi(θ) = θi , and those results do not cover curved
exponential families with an increasing number of nat-
ural parameters subject to nonlinear constraints, such as
curved ERGMs with GWESP terms and 1 + |N| − 2 nat-
ural parameters.

3.2 Question II: Must ERGMs Be Projective for
Well-Posed Inference?

3.2.1 Overview and history. A second question that
has been raised is whether ERGMs must satisfy a prop-
erty called projectivity for statistical inference to be
well-posed. This question arises from the observation
that many ERGMs are not projective, as first pointed
out by Lauritzen (2008) and Snijders (2010). Neces-
sary and sufficient conditions for projectivity of ERGMs
with size-invariant natural parameters of fixed dimen-
sion were provided by Shalizi and Rinaldo (2013); some
follow-up work can be found in Lauritzen, Rinaldo and
Sadeghi (2018). Other notable work related to the topic
of projectivity—outside of the ERGM framework—can
be found in, for example, Caron and Fox (2017), Crane
(2018) and Crane and Dempsey (2020).

In the ERGM framework, projectivity may be defined
as follows. Consider a subgraph yN′ of a population graph
yN induced by a subset of nodes N′ ⊂ N, that is, the sub-
graph with the set of nodes N′ and all edges among nodes
in N′ contained in the population graph yN. An ERGM is
called projective if

η
(
θ,N′) = θ for all θ ∈ � and all N′ ⊆ N

and

PN′,θ (YN′ = yN′) = PN,θ (YN′ = yN′,YN\N′ ∈ YN\N′),

where yN\N′ ∈ YN\N′ denotes the subset of possible edges
of the population graph that are not contained in the sub-
graph induced by N′. The notion of projectivity above was
advanced by Shalizi and Rinaldo (2013), who focused on
ERGMs with counting measure as reference measure, al-
though Shalizi and Rinaldo considered more general ref-
erence measures in a supplement. We consider here the
more general definition, covering all σ -finite reference
measures. It is worth noting that there are weaker forms of
projectivity in the ERGM framework, for example, condi-
tional projectivity (Snijders, 2010) and block projectivity
(Schweinberger and Handcock, 2015). Here, we restrict
attention to the above definition of projectivity.

Projectivity is a form of closure under marginalization,
and implies that the same parameters govern the popu-
lation graph and the marginal distributions of all of its
subgraphs. While closure under marginalization is con-
venient on mathematical grounds, it embodies the strong
assumption that no subgraph of the population graph is
affected by its embeddedness in the population graph.
For example, consider 3 people attending a party of 30.
To be projective, the probabilities of interactions among
those 3 people must neither be affected by interactions of
those 3 with the 27 others nor by the interactions among
the 27 others. In other words, the probabilities of interac-
tions among the 3 people must be the same, regardless of
whether 27 other people attend the party. Such an assump-
tion may not be satisfied by many networks (human or
otherwise). Not surprisingly, many ERGMs are not pro-
jective, including some of the simplest and most classic
random graph models.

For instance, sparse Bernoulli(π|N|) random graphs
with size-dependent edge probabilities π|N| (Gilbert,
1959, Erdős and Rényi 1959, 1960) are not projective,
because the edge probabilities π|N| decrease with the
size |N| of N. Sparse Bernoulli(π|N|) random graphs
assume that the edge variables Yi,j are independent
Bernoulli(π|N|) random variables, and that the expected
number of edges

(|N|
2

)
π|N| grows slower than

(|N|
2

)
, which

implies that π|N| must decrease with |N|. Consider the pa-
rameterization π|N| = logit−1(θ − log |N|) (θ ∈ R), which
implies

PN,η(θ,N)(YN = yN)

= ∏
i<j : i,j∈N

π
yi,j

|N| (1 − π|N|)1−yi,j

∝ exp

⎛
⎝η(θ,N)

∑
i<j : i,j∈N

yi,j

⎞
⎠ ν(yN),

where the natural parameter is

η
(
θ,N′) = θ for all θ ∈ R and all N′ ⊆ N

and the offset log |N| has been absorbed into the reference
measure:

ν(yN) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp

⎛
⎝− log |N| ∑

i<j : i,j∈N
yi,j

⎞
⎠ if yN ∈ {0,1}(|N|

2 )

0 otherwise.

Sparse Bernoulli(π|N|) random graphs are not projective,
because |N′| = |N| implies π|N′| = π|N|, so∏

i<j : i,j∈N′
π

yi,j

|N′|(1 − π|N′|)1−yi,j

= ∏
i<j : i,j∈N′

π
yi,j

|N| (1 − π|N|)1−yi,j ,
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and hence

PN′,θ (YN′ = yN′) = PN,θ (YN′ = yN′,YN\N′ ∈ YN\N′).

It is worth noting that, despite the lack of projectiv-
ity, sparse Bernoulli(π|N|) random graphs have meaning-
ful asymptotic behavior: for example, the expected num-
ber of edges of each node tends to the constant exp(θ)

as |N| → ∞ (Krivitsky, Handcock and Morris, 2011).
Thus, lack of projectivity does not rule out meaningful
asymptotic behavior. Indeed, sparse Bernoulli(π|N|) ran-
dom graphs have many interesting asymptotic properties
and have been studied in random graph theory since the
seminal work of Gilbert (1959) and Erdős and Rényi
(1959, 1960): see, for example, the classic monograph of
Bollobás (1985) and the more recent books of Janson,
Łuczak and Rucinski (2000) and Frieze and Karoński
(2016). Moreover, the sparsity-inducing reference mea-
sure ν(yN) can be shown to arise from a simple stochas-
tic process with an attractive interpretation (Butts, 2019),
providing a substantive motivation for its use.

The above suggests that projectivity is too restrictive to
be a basis for building plausible models of complex and
dependent network data. Nonetheless, projectivity is con-
venient, in that it provides a simple basis for extending
an ERGM from a subgraph to the population graph. This
raises the question of whether, in the absence of projec-
tivity, population probability models can be inferred from
a subgraph of the population graph.

3.2.2 Clarification: The likelihood function is not af-
fected by lack of projectivity. While many ERGMs are
not projective, lack of projectivity does not preclude
likelihood-based inference, for at least two reasons. First,
the likelihood function is not affected by lack of projec-
tivity. Second, lack of projectivity does not imply that
likelihood-based estimators are inconsistent. In fact, con-
sistency results for likelihood-based estimators of non-
projective ERGMs do exist. Taken together, these two
points imply that likelihood-based inference for well-
posed ERGMs is possible despite lack of projectivity. We
discuss the first point below and the second point in Sec-
tion 3.2.3.

The first important point is that the likelihood func-
tion is not affected by lack of projectivity. Consider
the motivating example of Shalizi and Rinaldo (2013):
there is a finite population of nodes N and a population
graph yN is generated by a population probability model
PN,η(θ,N)(YN = yN). This motivating example is repre-
sentative of other ERGM applications: for example, in the
human brain network example in Section 8, the popula-
tion of nodes N corresponds to 56 regions of the human
brain.

To derive the likelihood function in the motivating ex-
ample, it is imperative to separate the process that gener-
ates the population graph from the process that generates

observations of edges in the population graph. We follow
here the principled approach of Fisher (1922) and Rubin
(1976) to likelihood-based inference in complete- and
incomplete-data scenarios, which was adapted to ERGMs
by Gile and Handcock (2006), Handcock and Gile (2010)
and Koskinen, Robins and Pattison (2010). If the whole
population graph yN is observed, the likelihood function
is

L(θ;yN) ∝ PN,η(θ ,N)(YN = yN).

If a subgraph yN′ of yN induced by a subset of nodes
N′ ⊂ N is observed, generated by an incomplete-data gen-
erating process that is ignorable in the sense of Rubin
(1976), the likelihood function is

L(θ;yN′) ∝ PN,η(θ ,N)(YN′ = yN′,YN\N′ ∈ YN\N′).

In other words, the likelihood function can be obtained
by summing the population probability mass function
PN,η(θ ,N)(YN = yN) with respect to the unobserved
edges.

While deriving the likelihood function L(θ;yN′) is triv-
ial from a mathematical point of view—although comput-
ing it may not be trivial, as discussed below—the form of
the likelihood function has important statistical implica-
tions. First, as Shalizi and Rinaldo (2013) point out, it is
problematic to base inference on PN′,η(θ,N′)(YN′ = yN′),
because PN′,η(θ ,N′)(YN′ = yN′) may not be relatable
to PN,η(θ,N)(YN = yN) when the model is not projec-
tive. It is therefore comforting to know that likelihood-
based inference is not based on PN′,η(θ ,N′)(YN′ = yN′),
but is based on the marginal probability mass func-
tion PN,η(θ ,N)(YN′ = yN′,YN\N′ ∈ YN\N′) induced by
PN,η(θ ,N)(YN = yN). Indeed, the marginal probabil-
ity mass function is related to PN,η(θ ,N)(YN = yN) by
marginalization, regardless of whether the model is pro-
jective. As a result, the likelihood function L(θ;yN′) is
not affected by lack of projectivity. Projectivity does fa-
cilitate the evaluation of the likelihood function, but the
likelihood function does not require it.

Statistical implications. The results of Shalizi and Ri-
naldo (2013) underscore the importance of likelihood-
based inference: statistical inference for ERGMs should
be based on the likelihood function L(θ;yN′), which is
not affected by lack of projectivity. Indeed, since the
1990s, ERGM experts have known that non-likelihood-
based inference is problematic. Dahmström and Dahm-
ström (1993, 1999), Corander, Dahmström and Dahm-
ström (1998, 2002), Lubbers and Snijders (2007), and Van
Duijn, Gile and Handcock (2009) compared likelihood-
based and non-likelihood-based estimators by using ex-
act computations, based on complete enumeration of all
possible graphs of small sizes, along with simulation
studies and data analyses for graphs of larger sizes. All
of them concluded that non-likelihood-based inference,
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in particular pseudo-likelihood-based inference (Strauss
and Ikeda, 1990), tends to be inferior to likelihood-based
inference—at least when the dependence induced by the
model is strong and can propagate throughout the popu-
lation graph. We review likelihood-based inference given
incomplete data in Section 6.

Computational implications. While projectivity is not
necessary, it is convenient for the purpose of evaluating
the likelihood function L(θ;yN′). If the model is projec-
tive, summing PN,η(θ,N)(YN = yN) with respect to the
unobserved edges by using computational methods is un-
necessary, because the likelihood function L(θ;yN′) re-
duces to PN′,η(θ,N′)(YN′ = yN′). Otherwise, one needs
to sum PN,η(θ,N)(YN = yN) with respect to the unob-
served edges by using computational methods, either ex-
actly or approximately, by using Markov chain Monte
Carlo methods (Gile and Handcock, 2006, Handcock and
Gile, 2010, Koskinen, Robins and Pattison, 2010). These
computational challenges are the same as in other discrete
exponential-family models for dependent random vari-
ables, such as discrete Markov random fields in spatial
statistics (Besag, 1974, Cressie, 1993, Stein, 1999) and
machine learning (e.g., Ravikumar, Wainwright and Laf-
ferty, 2010, Yang et al., 2015). In many applications of
ERGMs, the required computations are feasible, because
either the population of interest is not too large or the pop-
ulation has additional structure that facilitates computa-
tions.

An example of small populations are the human brain
networks used in Section 8: each of the 108 human brain
networks has 56 nodes and is therefore small enough to
approximate the likelihood function L(θ;yN′) by using
Markov chain Monte Carlo methods when network data
are sampled or missing.

Examples of populations with additional structure are
populations with block structure, multilevel structure,
spatial structure and temporal structure. Some ERGMs
with additional structure have factorization properties.
Factorization properties facilitate likelihood-based com-
putations by allowing to break down likelihood functions
into parts, and the parts may be computed by using paral-
lel computing on multi-core computers and computing
clusters. We review ERGMs with additional structure,
including ERGMs with factorization properties, in Sec-
tion 4.

Such likelihood-based methods are implemented in
many ERGM-related statistical software packages—
including 20 ERGM-related R packages and the program
pnet (Wang, Robins and Pattison, 2006)—and the com-
putational burden has not prevented network scientists
from applying ERGMs to a substantial number of real-
world problems (with some examples given in Section 1).

3.2.3 Clarification: Consistency results for likelihood-
based estimators of non-projective ERGMs do exist. The
second important point regarding projectivity is that lack
of projectivity does not imply that estimators of θ are
inconsistent. Shalizi and Rinaldo (2013) showed that pro-
jectivity is a sufficient condition for consistency of maxi-
mum likelihood estimators for size-invariant natural pa-
rameters of fixed dimension. However, projectivity is
not a necessary condition for consistency of maximum
likelihood estimators: there do exist consistency results
for maximum likelihood estimators of non-projective
ERGMs. We review them in Section 7.

3.2.4 Clarification: Typically, ERGMs are not applied
to large populations, unless there is additional structure.
An implicit assumption, underlying both questions de-
scribed above, is that ERGMs are applied to large pop-
ulations without additional structure. However, in most
applications to date, ERGMs have been applied to either
small populations or large populations with additional
structure, as pointed out in Section 3.2.2. Statistical theory
should take advantage of additional structure rather than
working under the assumption that ERGMs are applied
without it. Advances in the development of concentra-
tion inequalities (e.g., Talagrand, 1996, Boucheron, Lu-
gosi and Massart, 2013) enable statistical theory to do so.
We review an example in Section 7.2.

4. ERGMS WITH ADDITIONAL STRUCTURE

Well-posed ERGMs with additional structure address
the lack of structure of simplistic ERGMs and there-
fore have an important place in the ERGM framework,
as pointed out in Section 3.1.3. Here, “additional struc-
ture” is understood as additional mathematical structure
imposed on:

(a) the support or reference measure of ERGMs;
(b) the dependence structure of ERGMs;
(c) the parameter space of ERGMs;
(d) combinations of (a), (b) and (c).

For example, additional structure may come in the form
of constraints on the number of edges or other functions
of the random graph; constraints on the parameter space
of ERGMs, as imposed by curved ERGMs; or constraints
on the dependence structure of ERGMs imposed by block
structure, multilevel structure, spatial structure or tempo-
ral structure.

We review here some of the more established classes
of ERGMs with additional structure. Other classes, not
discussed here, are measurement models with an underly-
ing latent graph generated by an ERGM (Wyatt, Choud-
hury and Bilmes, 2008); ERGMs with restrictions on the
support (Karwa, Petrović and Bajić, 2016); nonparametric
ERGMs with constraints (Thiemichen and Kauermann,
2017); and ERGMs constraining variances of sufficient
statistics (Fellows and Handcock, 2017).
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4.1 Dyad-Independent ERGMs

A simple form of additional structure comes in the form
of constraints on the dependence structure of ERGMs. In
the simplest case, one can assume that all edge variables
Yi,j in undirected random graphs are independent or all
dyads (Yi,j , Yj,i) in directed random graphs are indepen-
dent.

In the undirected case, assuming edge variables Yi,j

are independent, the population probability mass function
satisfies the following factorization property:

PN,η(θ,N)(YN = yN)

= ∏
i<j : i,j∈N

P{i,j},η(θ,N)(Yi,j = yi,j ).
(1)

In the directed case, assuming dyads (Yi,j , Yj,i) are inde-
pendent, the population probability mass function satis-
fies the following factorization property:

PN,η(θ ,N)(YN = yN)
(2)

= ∏
i<j : i,j∈N

P{i,j},η(θ,N)(Yi,j = yi,j , Yj,i = yj,i).

Classic examples are Bernoulli random graphs and β-
models for undirected random graphs (Gilbert, 1959,
Erdős and Rényi 1959, 1960, Chatterjee, Diaconis and
Sly, 2011, Rinaldo, Petrović and Fienberg, 2013, Karwa
and Slavković, 2016) and p1-models for directed random
graphs (Holland and Leinhardt, 1981, Yan, Zhao and Qin,
2015, Yan, Leng and Zhu, 2016, Yan, Qin and Wang,
2016, Yan et al., 2019). These models can capture het-
erogeneity in the propensities of nodes to form edges.
For example, β-models assume that edge variables Yi,j

are independent Bernoulli(πi,j ) random variables with
node-dependent edge probabilities πi,j = logit−1(θi +θj )

(θi ∈ R, θj ∈ R), which are equivalent to ERGMs with
population probability mass functions of the form

PN,η(θ ,N)(YN = yN) ∝ ∏
i<j : i,j∈N

exp
(
ηi,j (θ ,N) yi,j

)
,

where

ηi,j (θ ,N) = θi + θj , i ∈ N, j ∈ N.

The parameters θi and θj can be interpreted as the propen-
sities of nodes i ∈ N and j ∈ N to form edges, respec-
tively. These propensities can vary from node to node,
so the model can capture heterogeneity in the propensi-
ties of nodes to form edges. In addition, when the edges
in the population graph are directed and the population
graph is generated by p1-models (Holland and Leinhardt,
1981), such models can capture reciprocity. Reciprocity
refers to the tendency of nodes i ∈ N and j ∈ N to recip-
rocate edges, that is, Yi,j = 1 and Yj,i = 1 are observed
more frequently than would be expected when the edges

Yi,j and Yj,i were independent. Note that reciprocity in-
duces dependence between edge variables Yi,j and Yj,i ,
but leaves dyads (Yi,j , Yj,i) independent.

Dyad-independent ERGMs constrain the range of de-
pendence and hence do not have the undesirable prop-
erties of the triangle model and other simplistic ERGMs
with complex dependence, which are rooted in the lack
of structure and the strong dependence induced by those
models (as explained in Section 3.1). In addition, the fac-
torization properties of probability mass functions (1) and
(2) have computational advantages, facilitating the evalu-
ation of likelihood functions.

4.2 Curved ERGMs

While dyad-independent ERGMs do not have the un-
desirable properties of the triangle model and other sim-
plistic ERGMs, such models do not capture dependencies
among edge variables, other than reciprocity in directed
random graphs. To model transitivity and other network
phenomena inducing dependence, ERGMs with less re-
strictive forms of additional structure have to be consid-
ered. Curved ERGMs are an important example.

Curved ERGMs were developed by Snijders et al.
(2006) and Hunter and Handcock (2006) to address the
flaws of simplistic ERGMs lacking structure, such as the
triangle model (see, e.g., Snijders et al., 2006, Hunter
and Handcock, 2006, Hunter, 2007, Hunter, Goodreau
and Handcock, 2008, Goodreau, Kitts and Morris, 2009,
Robins, Pattison and Wang, 2009). Curved ERGMs im-
pose additional structure in the form of nonlinear con-
straints on the natural parameter space of the exponential
family (Barndorff-Nielsen, 1978, Brown, 1986) and are
curved exponential families in the sense of Efron (1975,
1978). We presented one example of curved ERGMs in
Section 3.1.3: curved ERGMs with edge and GWESP
terms, which ensure that the added value of additional tri-
angles decreases, in contrast to the triangle model. To de-
scribe a large class of curved ERGMs with geometrically
weighted model terms, consider ERGMs with population
probability mass functions of the form

PN,η(θ,N)(YN = yN)

∝ exp

⎛
⎝ M∑

m=1

ηm(θ ,N) sm(xN,yN) + · · ·
⎞
⎠ ,

where the dots refer to additional model terms, such
as edge terms. Here, the sufficient statistics sm(xN,yN)

count the number of units of a specified type with m sub-
graph configurations of a specified type. The units may
refer to nodes; unconnected pairs of nodes; or connected
pairs of nodes, as in GWESP terms. The subgraph con-
figurations may refer to shared partners, as in GWESP
terms, but many other subgraph configurations are possi-
ble. Some examples can be found in Hunter, Goodreau
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and Handcock (2008). In addition, the sufficient statis-
tic may depend on the attributes xN of the population of
nodes N. The natural parameters are of the form

ηm(θ ,N) = θ1 exp(θ2)
[
1 − (

1 − exp(−θ2)
)m]

,

where m = 1, . . . ,M .
The additional structure imposed by these curved

ERGMs comes in the form of nonlinear constraints on
the natural parameter space of the exponential family. In
the example used in Section 3.1.3, curved ERGMs with
edge and GWESP terms, the natural parameter space is
R

1+|N|−2, and the curved ERGM imposes nonlinear con-
straints on R

1+|N|−2. If θ1 > 0 and θ2 > 0, these nonlinear
constraints ensure that the added value of additional sub-
graph configurations of the specified type decreases. To
see this, consider a single unit, for example, a connected
pair of nodes {i, j}. The log odds of a graph where the
unit has m configurations of the specified type relative to
a graph where it has m − 1 configurations is, assuming
everything else is the same, given by

θ1
(
1 − exp(−θ2)

)m−1
,

where m = 1, . . . ,M . In other words, the added value of
additional configurations of the specified type decreases at
a geometric rate. Figure 2 in Section 3.1.3 demonstrates
how fast the added value of additional triangles decays in
the special case of GWESP.

The main ERGM-related statistical software packages,
including the 20 ERGM-related R packages mentioned
in Section 1 and the program pnet (Wang, Robins and
Pattison, 2006), implement many geometrically weighted
model terms and related model terms (e.g., Butts, 2008,
Robins, Pattison and Wang, 2009). In practice, curved
ERGMs with geometrically weighted terms have been
found useful: selected examples are cited in Section 3.2.2.
We illustrate in Section 8 that curved ERGMs with edge,
GWESP, and other terms can outperform both Bernoulli
random graphs and latent space models.

4.3 ERGMs with Block Structure

A simple form of additional structure is block structure,
which is popular in the literature on stochastic block mod-
els (e.g., Nowicki and Snijders, 2001, Bickel and Chen,
2009, Rohe, Chatterjee and Yu, 2011). In the simplest
case, a block structure corresponds to a partition of a pop-
ulation of nodes N into K subpopulations A1, . . . ,AK ,
called blocks. While stochastic block models assume that
edges within and between blocks are independent condi-
tional on the block structure, ERGMs with block structure
allow edges to be dependent within and between blocks.
As a result, ERGMs with block structure can be viewed as
generalizations of stochastic block models. As in stochas-
tic block models, the block structure may be observed or
unobserved.

We present here two classes of ERGMs with block
structure: one class of ERGMs that exploits block struc-
ture to constrain the range of dependence and another
class of ERGMs that exploits block structure to capture
unobserved heterogeneity.

4.3.1 Constraining the range of dependence. ERGMs
that exploit observed block structure to constrain the
range of dependence were introduced by Strauss and
Ikeda (1990) in the special case of Markov random
graphs, using categorical covariates to partition a pop-
ulation of nodes into blocks. A more general class,
with observed and unobserved blocks, was developed by
Schweinberger and Handcock (2015) and Schweinberger
(2020). For simplicity, we focus henceforth on observed
block structure.

Given observed block structure, these models are char-
acterized by the following factorization property:

PN,η(θ,N)(YN = yN)
(3)

=
K∏

k=1

k∏
l=1

P{Nk,Nl},η(θ,N)(YNk,Nl
= yNk,Nl

),

where YNk,Nl
denotes the set of edge variables corre-

sponding to possible edges between nodes in subpopula-
tion Nk and nodes in subpopulation Nl . To constrain the
range of dependence to blocks, these models assume that
between-block edges are independent,

P{Nk,Nl},η(θ ,N)(YNk,Nl
= yNk,Nl

)

= ∏
i∈Nk,j∈Nl

P{i,j},η(θ ,N)(Yi,j = yi,j ),

whereas within-block edges may be dependent:

P{Nk,Nk},η(θ ,N)(YNk,Nk
= yNk,Nk

)

= ∏
i<j : i,j∈Nk

P{i,j},η(θ,N)(Yi,j = yi,j ).

If ERGMs are used as within- and between-block mod-
els, then the population probability model is an ERGM:
an ERGM with additional structure in the form of block
structure and local dependence within blocks. A con-
crete example is given by the curved ERGMs with block-
dependent edge and GWESP terms described in Sec-
tion 7.2.

Such ERGMs, exploiting block structure to constrain
the range of dependence, address the lack of structure
of simplistic ERGMs and have at least three advantages.
First, local dependence often makes substantive sense, be-
cause many real-world networks are local in nature (e.g.,
Homans, 1950, Wasserman and Faust, 1994, Pattison and
Robins, 2002). Second, these models retain the main ad-
vantage of ERGMs, the flexibility to model a wide range
of network features, because the within-block ERGMs
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can model a wide range of network features within blocks.
At the same time, the models address the main disadvan-
tage of simplistic ERGMs, the lack of structure, by us-
ing block structure to constrain the range of dependence.
As long as the blocks are not too large, the overall de-
pendence induced by the model is weak and the model
does not suffer from model near-degeneracy, which re-
sults from strong long-range dependence (as discussed in
Sections 3.1.2 and 3.1.3). Third, these models have sta-
tistical advantages, because weak dependence can be ex-
ploited to derive concentration results, which in turn can
be used to establish consistency results for likelihood-
based estimators. We discuss them in Section 7. Last,
but not least, ERGMs with block structure have computa-
tional advantages, because the factorization of probability
mass function (3) facilitates the computation of likelihood
functions.

4.3.2 Capturing unobserved heterogeneity. We dis-
cuss here two classes of ERGMs that take advantage of
block structure to capture unobserved heterogeneity.

The ERGMs of Koskinen (2009) use block-dependent
edge terms to capture unobserved heterogeneity in the
propensities of nodes to form edges, along with alternat-
ing k-triangle terms to capture transitivity; note that al-
ternating k-triangle terms are related to GWESP terms,
as explained by Hunter (2007). Wang et al. (2018) used
ERGMs with local dependence within blocks
(Schweinberger and Handcock, 2015) to capture hetero-
geneity among communities in terms of the propensities
to form edges as well as other network features.

Salter-Townshend and Murphy (2015) developed mix-
tures of ERGMs for network data that are collected by
sampling nodes from a population of nodes (called egos),
recording which nodes are connected to egos (called
alters), and which of the alters are connected. Salter-
Townshend and Murphy assumed that these ego-centric
networks were generated by a finite mixture of ERGMs.
The resulting mixture of ERGMs can be viewed as a
model with block structure, where each ego belongs to
one block, each block has a block-dependent ERGM, and
the ego-centric networks of all egos in the same block
are generated by the same block-dependent ERGM. It is
worth noting though that the resulting model is a model
of ego-centric networks rather than the population graph,
and each possible edge shows up in two ego-centric net-
works and is hence governed by two block-dependent
ERGMs (see Salter-Townshend and Murphy, 2015).

4.4 ERGMs with Multilevel Structure

There is a large and growing body of work on multilevel
network data and models (e.g., Lubbers, 2003, Wang et al.
2013, 2016a, Zappa and Lomi, 2015, Lomi, Robins and
Tranmer, 2016, Slaughter and Koehly, 2016, Hollway and
Koskinen, 2016, Lazega and Snijders, 2016, Brailly et al.,

2016, Meredith et al., 2017, Hollway et al., 2017, Gondal,
2018, Stewart et al., 2019).

Multilevel network data are network data with hierar-
chical structure, in the sense that level-1 units (nodes) are
nested within level-2 units (subsets of nodes), which in
turn may be nested within level-3 units (subsets of sub-
sets of nodes), and so forth. A simple form of multi-
level structure is observed block structure, as described in
Section 4.3, where nodes correspond to level-1 units and
blocks correspond to level-2 units. More general forms
of multilevel structure exist: for example, in universi-
ties, faculty members (level-1 units) are nested within de-
partments (level-2 units); departments are nested within
schools (level-3 units); and schools are nested within uni-
versities (level-4 units). It is worth noting that multilevel
structure is observed: for instance, it can be observed
which faculty member belongs to which department, and
which department belongs to which school.

To demonstrate multilevel ERGMs, consider two-level
networks, with nodes (level-1 units) nested within subsets
of nodes N1, . . . ,NK (level-2 units). An example of two-
level networks is given by the human brain networks used
in Section 8, where the level-1 units correspond to 56 re-
gions of the brain and the level-2 units correspond to 108
brains. A simple form of two-level ERGM assumes that

PN,η(θ ,N)(YN = yN)
(4)

=
K∏

k=1

P{Nk,Nk},η(θ,N)(YNk,Nk
= yNk,Nk

).

An ERGM with two-level structure (4) is a special case of
an ERGM with block structure (3) when edges between
subpopulations do not exist with probability 1. A spe-
cific example of a two-level ERGM with edge, GWESP,
and other terms can be found in Section 8. Well-posed
ERGMs with multilevel structure share the advantages of
ERGMs with block structure, as discussed in Section 4.3.

4.5 ERGMs with Spatial Structure

In some applications of ERGMs, the population of
nodes is embedded in a space. The space in question
may be a geographical space (Butts and Acton, 2011) or
a social space (McPherson, 1983), constructed from ob-
served attributes of population members (e.g., race). Spa-
tial structure can be exploited to construct more realis-
tic and better-behaved ERGMs. For instance, researchers
may hypothesize that the probability of an edge decreases
as the distance between population members increases. To
test such hypotheses and estimate the strength of the ef-
fect of distance on the population graph, ERGMs can be
used, with model terms that are functions of the distances
between population members. Such ERGMs can induce
sparsity by penalizing edges between pairs of nodes that
are separated by large distances, and can help control the
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dependence of edge variables, resulting in better-behaved
ERGMs.

To give a simple example, assume that the spatial lo-
cations of nodes are observed, for example, the positions
are based on geographical or other observed attributes of
nodes. We do not consider unobserved spatial structure,
but note that ERGMs with unobserved spatial structure
can be viewed as generalizations of latent space models
(Hoff, Raftery and Handcock, 2002). A simple example
of an ERGM with observed spatial structure is an ERGM
with population probability mass function

PN,η(θ,N,d)(YN = yN)

∝ exp

⎛
⎝ ∑

i<j : i,j∈N
ηi,j (θ ,N, d) yi,j

⎞
⎠ ,

where

ηi,j (θ ,N, d) = θ1 − θ2 f
(
d(i, j)

)
.

Here, d : N × N �→ R
+
0 is a distance function and f :

R
+
0 �→R

+
0 is a function of distance, where R+

0 = R
+ ∪{0}

denotes the set of positive real numbers R
+ and 0. The

function f specifies how the distance affects the log odds
of the probability of an edge:

log
PN,η(θ,N,d)(Yi,j = 1)

1 − PN,η(θ,N,d)(Yi,j = 1)
= ηi,j (θ ,N, d).(5)

The function f : R+
0 �→ R

+
0 can take many forms, for ex-

ample, if f (d(i, j)) = d(i, j) and d(i, j) is the Euclidean
distance between the positions of i ∈ N and j ∈ N in R

d ,
the model is equivalent to the latent space model of Hoff,
Raftery and Handcock (2002) with θ2 = 1 and observed
distances. But other choices of f : R+

0 �→ R
+
0 are possi-

ble, allowing the log odds to decay slower or faster as a
function of distance. Butts and Acton (2011) showed that
the rate of decay can have a considerable impact on the
structure of the population graph, so care must be taken
when specifying ERGMs with spatial structure. In addi-
tion, ERGMs can contain more model terms depending
on distance, although the log odds of the probability of
an edge (5) needs to be replaced by the log odds of the
conditional probability of an edge when the model terms
induce dependence among edge variables.

ERGMs with spatial structure have at least three advan-
tages. First, ERGMs with spatial structure offer many op-
portunities for testing and modeling the impact of spatial
structure on the population graph. Second, ERGMs as-
suming that the probability of an edge decreases as a func-
tion of distance can induce sparsity by penalizing edges
between pairs of nodes that are separated by large dis-
tances. Last, but not least, forcing the dependence of edge
variables to decay as a function of distance can help con-
trol dependence, resulting in better-behaved ERGMs. For

instance, Butts (2011) showed that even a local triangle
term based on triangles within a specified radius can be
well-behaved, provided that the radius is not too large rel-
ative to the population density. The same idea can be ap-
plied to GWESP terms and other geometrically weighted
model terms in curved ERGMs, which are expected to be-
have even better than local triangle terms.

4.6 ERGMs with Temporal Structure

Many networks change over time, and temporal struc-
ture can help construct well-behaved ERGMs: modeling
a sequence of small changes of a large population graph
may be easier than modeling the whole population graph
at once, because edges are interdependent. Hanneke, Fu
and Xing (2010) introduced discrete-time Markov mod-
els to do so, with transition probabilities parameterized
by ERGMs. Krivitsky and Handcock (2014) elaborated a
separable parameterization, separating the edge formation
and dissolution process. We do not discuss such models
here, because ERGMs with temporal structure are a com-
plex class of models that deserves a separate treatment
elsewhere, and because many of the associated statisti-
cal issues are special cases of classes treated elsewhere
in our paper. We refer to the cited literature for details,
and to Robins and Pattison (2001) and Ouzienko, Guo and
Obradovic (2011) for earlier work on temporal ERGMs.

4.7 ERGMs with Non-Random and Random Attributes

In addition to edges, nodes may have attributes, which
may be non-random or random, observed or unobserved.
Attributes may not impose much structure, but help cap-
ture heterogeneity, observed or unobserved, in the propen-
sities of nodes to form edges and other subgraph configu-
rations.

We first discuss ERGMs with observed non-random
and random attributes and then ERGMs with unobserved,
random attributes.

4.7.1 Observed non-random and random attributes.
The attributes of nodes may either be exogenous, non-
random (e.g., race) or endogenous, random (e.g., political
preference).

Incorporating non-random attributes as predictors of
edges makes sense, is straightforward and has a long
tradition in the ERGM literature. Some examples are
provided by Morris, Handcock and Hunter (2008) and
Hunter, Goodreau and Handcock (2008): for example, ho-
mophily or similarity with respect to categorical attributes
of nodes can be captured by including sufficient statistics
of the form

∑
i<j : i,j∈N I (xi = xj ) yi,j , where xi and xj

are categorical attributes of nodes i and j , respectively,
and I (xi = xj ) = 1 if xi = xj and I (xi = xj ) = 0 other-
wise.

A special case of interest is when the attributes are ran-
dom, governed by a joint probability model for both the
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random attributes and the random graph. Models for both
random attributes and random graphs were explored by
Fellows and Handcock (2012) in the exponential-family
framework. The resulting models are complex, and we re-
fer to Fellows and Handcock (2012) for details.

4.7.2 Unobserved random attributes. We distinguish
ERGMs with discrete and continuous unobserved random
attributes.

The discrete case was considered by Koskinen (2009),
Schweinberger and Handcock (2015) and Wang et al.
(2018), as discussed in Section 4.3. The continuous case
was considered by Thiemichen et al. (2016), who devel-
oped a class of ERGMs with random effects. In the special
case of dyad-independent ERGMs, there has been a long
tradition of using random effects models, dating back to
the p2-models of van Duijn (1995) and van Duijn, Sni-
jders and Zijlstra (2004) and the related models of Gill
and Swartz (2004), which are random effects versions of
the p1-models of Holland and Leinhardt (1981) and re-
lated to the random effects and mixed effects models of
Hoff (2003, 2005). Thiemichen et al. (2016) considered
more general ERGMs with the number of edges fi(yN) =∑

j =i:j∈N yi,j of nodes i ∈ N as sufficient statistics, along
with other sufficient statistics. Thiemichen et al. assumed
that the weights ηi(θ ,N) of the sufficient statistics fi(yN)

are random coefficients of the form ηi(θ,N) = θ1 + εi ,
where θ1 ∈ R can be interpreted as the overall propensity
to form edges in the population, εi ∈ R can be interpreted
as the deviation of node i ∈ N from the overall propen-

sity and εi
i.i.d.∼ N(0, σ 2) (σ 2 > 0). The resulting random

effects ERGMs can capture unobserved heterogeneity in
the propensities of nodes to form edges, along with other
network features.

5. COMPLETE- AND INCOMPLETE-DATA
GENERATING PROCESS

The discussion of the likelihood function in Sec-
tion 3.2.2 demonstrates that likelihood-based inference
requires proper statistical language to clarify the core
statistical notions of “sample” and “population” in the
ERGM framework, and to separate the process that gen-
erates the population graph from the observation process.

We follow here the principled approach of Rubin (1976)
and distinguish the complete-data generating process
(generating the population graph) from the incomplete-
data generating process (the observation process). A fail-
ure to take both of these processes into account can lead to
misleading statistical conclusions, as discussed by Rubin
(1976), Dawid and Dickey (1977), Thompson and Frank
(2000), Gile and Handcock (2006, 2017), Handcock
and Gile (2010), Koskinen, Robins and Pattison (2010),
Crane (2018) and Crane and Dempsey (2020). We dis-
cuss complete- and incomplete-data generating processes
in Sections 5.1 and 5.2, respectively.

The specification of the complete-data generating pro-
cess serves at least two additional purposes. First, the
parameters of the complete-data generating process con-
stitute the natural target of statistical inference. Second,
the population graph or super population of population
graphs generated by the complete-data generating process
is the population or super population to which statistical
inferences generalize.

As a consequence, the specification of the complete-
data generating process is coupled with the goal of sta-
tistical inference. We distinguish three broad goals of sta-
tistical inference: finite, super and infinite population in-
ference. These notions are inspired by the corresponding
notions in classical statistics (e.g., Hartley and Sielken,
1975). We adapt them here to the statistical analysis of
network data.

DEFINITION. Finite population inference is concer-
ned with a finite population of nodes N and a fixed popu-
lation graph yN defined on N. It does not assume that the
population graph was generated by a population probabil-
ity model. The goal is to estimate functions of the popu-
lation graph (e.g., the total number of edges in the popu-
lation graph or the presence or absence of specific edges).

DEFINITION. Super population inference is concerned
with a finite population of nodes N and a population graph
yN defined on N. In contrast to finite population infer-
ence, it assumes that the population graph was generated
by a population probability model. The goal is to esti-
mate the population probability model governing the su-
per population of possible population graphs.

DEFINITION. Infinite population inference is con-
cerned with an infinite population of nodes N and a pop-
ulation graph yN defined on N generated by a population
probability model. The goal of statistical inference is to
estimate the population probability model based on a sub-
graph yN induced by a subset of nodes N′ ⊂N.

5.1 Complete-Data Generating Process

The complete-data generating process is the process
that generates the complete data, that is, the population
graph of interest.

It is possible to make no assumptions about the
complete-data generating process, leading to finite pop-
ulation inference (Section 5.1.1). If the process that gen-
erates the population graph is of substantive interest, one
may specify a super population of possible population
graphs along with a population probability model that
generates population graphs. The specification of the su-
per population of population graphs may assume that the
sizes of graphs are either fixed or limited to a finite range
of possible sizes, leading to super population inference for
population probability models of graphs of the same size
or similar sizes (Section 5.1.2). An alternative is to make
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assumptions about how the model behaves as the size and
composition of the set of nodes N changes, leading to
infinite population inference on models of sequences of
graphs of increasing size (Section 5.1.3). We discuss these
cases in turn.

5.1.1 Finite graphs: Finite population inference. In
some applications, it is neither necessary nor desirable
to make assumptions about the complete-data generat-
ing process. For example, consider the network of sex-
ual relationships between HIV-infected residents and non-
infected residents of New York City (NYC) during a spec-
ified period of time, where the goal is to estimate the
number of sexual contacts between HIV-infected and non-
infected residents. The population of interest N consists
of the residents of NYC and the population graph yN con-
sists of sexual relationships between residents of NYC. If
the whole population graph yN is observed, the popula-
tion graph can be used to answer the question of interest
by counting the number of sexual relationships between
HIV-infected and non-infected residents. If it is not possi-
ble to observe the whole population graph yN but a sam-
ple of sexual relationships is generated (as discussed in
Section 5.2), then the sample can be used to construct an
estimator of the number of sexual relationships between
HIV-infected and non-infected residents. But, regardless
of whether the whole population graph yN is observed,
answering the question of interest does not require any
assumption about the complete-data generating process.
In such situations, finite population inference is all that is
needed to answer the question of interest.

Target of statistical inference. In finite population in-
ference, any function of the population graph yN is a
legitimate target of statistical inference: for example, in
the sexual network example described above, researchers
may be interested in estimating the number of sexual re-
lationships between HIV-infected and non-infected resi-
dents of NYC. Here, model-based inference may neither
be necessary nor desirable and design-based inference is
all that is needed (Kurant et al., 2012, Gjoka, Smith and
Butts 2014, 2015).

A special case where model-based inference based on
ERGMs is useful for finite population inference was
considered by Krivitsky and Morris (2017). Krivitsky
and Morris (2017) used ego-centric sampling to estimate
population-level network features of interest, then used
the estimated population-level network features as suffi-
cient statistics of an ERGM to simulate graphs that are
similar to the estimated population-level network fea-
tures. To elaborate, define

θ(xN,yN) = arg max
θ ′∈�

(〈
η
(
θ ′,N

)
, s(xN,yN)

〉 − ψ
(
θ ′,N

))
,

and note that the maximizer θ(xN,yN) exists and is
unique as long as s(xN,yN) falls into the relative in-
terior of the convex hull of the set {s(xN,yN) : yN ∈

YN} (Barndorff-Nielsen, 1978, p. 151). The maximizer
θ(xN,yN) is a function of the attributes of population
members xN and the population graph yN and is hence
a legitimate target of finite population inference. We note
that the maximizer θ(xN,yN) is equivalent to the maxi-
mum likelihood estimate, but θ(xN,yN) is not random,
because neither xN nor yN are random. In fact, if the
whole population graph yN is observed, then the maxi-
mizer can in principle be computed without error, though
in practice one may have to approximate the maximizer
by using Monte Carlo maximum likelihood estimates as
described by Krivitsky and Morris (2017). The function
θ(xN,yN) is of interest, because it can be used to sim-
ulate graphs that are similar to the population graph: by
well-known exponential-family properties (Brown, 1986,
Theorem 5.5, p. 148), the expected sufficient statistic
s(xN,YN) matches the sufficient statistic s(xN,yN) of
the population N under θ(xN,yN). Thus, graphs sim-
ulated from the ERGM with parameter θ(xN,yN) will
have sufficient statistics that are similar to the population
graph in terms of the sufficient statistic s(xN,yN).

An example of a situation in which one may wish to
simulate similar graphs are data privacy settings involv-
ing network data. In other words, researchers may wish
to share network data with others, while protecting the
privacy of population members. To do so, researchers
can simulate a graph that is similar—but not identical—
to the population graph yN in terms of network features
s(xN,yN) (Fienberg and Slavkovic, 2010, Karwa, Krivit-
sky and Slavković, 2017). Goodreau et al. (2008) used the
described procedure to create synthetic school networks
based on the National Longitudinal Study of Adolescent
Health, some of which are included in R package ergm
(Hunter et al., 2008). These networks are used for edu-
cational purposes, such as tutorials and workshops, and
software testing. In such applications, it is useful to have
network data with realistic structure, but it is not essential
to have exact replications of the original network data.

Last, but not least, an example that combines both mo-
tivations is model-based imputation, where one seeks to
impute the states of unobserved edge variables in a fixed
population graph. Model-based imputation (Gile and
Handcock, 2006, Handcock and Gile, 2010, Koskinen,
Robins and Pattison, 2010) can be performed by estimat-
ing an ERGM from an incomplete observation of the pop-
ulation graph—using the likelihood function L(θ; yN′)
described in Section 3.2.2—and then simulating draws
from the estimated model conditional on the observed
network data. Note that here the model is employed to
(a) leverage information from observed edge variables to
predict the states of unobserved edge variables and (2) en-
sures that the imputed population graphs have properties
that are compatible with the observed data (as discussed
above). The ERGM used to make the model-based im-
putations need not be the data-generating model of the
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population graph, as long as it helps impute the states of
unobserved edge variables. In such settings, it is natural to
assess model performance via prediction of held-out data,
as proposed by Wang et al. (2016b).

5.1.2 Finite graphs: Super population inference. While
in some applications it may neither be necessary nor de-
sirable to make assumptions about the complete-data gen-
erating process, in other applications the complete-data
generating process is of substantive interest. For example,
neuroscientists may be interested in the probability law
that governs connections between regions of the human
brain (e.g., Simpson, Moussa and Laurienti, 2012, Sinke
et al., 2016, Obando and De Vico Fallani, 2017). Here,
interest centers on a population probability model that
generates finite graphs of the same size or similar sizes.
The neuroscience application in Section 8 serves as an
example: the population of interest consists of 56 regions
of the human brain, and the goal of statistical inference is
to infer the probability law that governs connections be-
tween these 56 regions based on 108 brain networks (i.e.,
108 replications).

Target of statistical inference. In super population in-
ference, the target of statistical inference is the parame-
ter θ of the population probability model that generated
the population graph and governs the super population of
all possible population graphs of the same size or a finite
range of possible sizes. We note that even when the whole
population graph is observed, uncertainty arises from the
fact that the parameter θ is unknown.

5.1.3 Sequences of graphs of increasing size: Infinite
population inference. In both statistical practice and the-
ory, it is sometimes convenient to consider sequences of
graphs of increasing size. In many such situations, there
is an explicit or implicit assumption that there exists a
graph limit—that is, an infinite population graph defined
on an infinite population of nodes—to which sequences
of graphs converge (Lovász, 2012). We therefore refer to
statistical inference based on sequences of graphs of in-
creasing size as infinite population inference, despite the
fact that researchers in practice may be more interested
in subsequences of graphs of finite sizes rather than the
graph limit itself.

In statistical practice, sequences of graphs of increasing
size may be meaningful when, for example, one observes
two or more graphs of different sizes and wishes to for-
mulate a model that is invariant in a well-defined sense.
Consider residents of NYC and Seattle, where two resi-
dents are connected by an edge if the residents meet at
least twice a month to work out together. While NYC has
more than 10 times as many residents as Seattle, it is not
credible that the expected number of workout partners of
NYC residents is more than 10 times higher than the ex-
pected number of workout partners of Seattle residents, as

dense Bernoulli(π) random graphs assume. In such situ-
ations, it is convenient to formulate a model of sequences
of graphs of increasing size such that the expected num-
ber of edges of each node is invariant to network size and
consider the two observed graphs—the large NYC exer-
cise network and the small Seattle exercise network—as
two observations taken from a sequence of graphs gener-
ated by the model. ERGMs that respect such desiderata
have been developed by Krivitsky, Handcock and Mor-
ris (2011), Krivitsky and Kolaczyk (2015), and Butts and
Almquist (2015).

In statistical theory, it is convenient to embed observed
data (e.g., an observed graph) into a sequence of data sets
of increasing size (e.g., a sequence of graphs of increasing
size), which is a classic approach in statistical theory: for
example, Lehmann (1999) suggested

“to embed the actual situation in a sequence of
situations, the limit of which serves as the de-
sired approximation” (Lehmann, 1999, p. 1).

Sequences of graphs of increasing size can be con-
structed in many ways: for example, graphs can grow by
adding nodes or subsets of nodes along with edges. To
cover a wide range of sequences of graphs of increas-
ing size, including cumulative and non-cumulative se-
quences, let A1,A2, . . . be a sequence of sets of nodes
and N1,N2, . . . be a sequence of sets of nodes satisfy-
ing Nk ⊆ ⋃k

l=1 Al . Suppose that the sequence of ran-
dom graphs YN1,YN2, . . . is generated by a sequence
of models of the form PN1,η(θ,N1),PN2,η(θ,N2), . . . , where
the natural parameter η(θ ,Nk) may depend on the set of
nodes Nk and the dimension of parameter θ may grow
with the size |Nk| of Nk . Then the generating processes
can be described by a sequence of the form(

N1,xN1,YN1,PN1,η(θ,N1)

)
,(

N2,xN2,YN2,PN2,η(θ,N2)

)
, . . .

Target of statistical inference. In infinite population in-
ference, the target of statistical inference is the parameter
θ of the population probability model; note that θ may not
be the natural parameter of the exponential family and the
dimension of θ may depend on the number of nodes, as
the β-models in Section 4.1 demonstrates.

5.2 Incomplete-Data Generating Process

The incomplete-data generating process is the process
that, conditional on the population graph generated by
the complete-data generating process, determines which
subgraphs of the population graph are observed. In the
best-case scenario, the whole population graph is ob-
served, but in more common scenarios, some of the edges
in the population graph are unobserved. The two most
common reasons for incomplete data are sampling and
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missing data. We discuss selected incomplete-data gen-
erating processes, with an emphasis on sampling designs
(Sections 5.2.1, 5.2.2 and 5.2.3) and missing data (Sec-
tion 5.2.4). We conclude with some comments on the fun-
damental concept of ignorability of incomplete-data gen-
erating processes for the purpose of likelihood-based su-
per and infinite population inference (Section 5.2.5).

5.2.1 Sampling nodes: Ego-centric sampling and link-
tracing. If a population of nodes N is large, it may not be
possible to observe the whole population graph. A popular
solution is to sample edges by using ego-centric sampling
(Krivitsky and Morris, 2017) or link-tracing (Thompson
and Frank, 2000, Gile and Handcock, 2006, Handcock
and Gile, 2010). Both sample a subset of nodes N′ ⊆ N

and record edges from nodes in N′ to nodes in N.
An ego-centric sampling design generates a sample of

nodes along with edges as follows (Krivitsky and Morris,
2017):

1. Generate a probability sample of nodes, called egos.
2. For each sampled ego, record edges to connected

nodes, called alters.

A probability sample of nodes can be generated by any
sampling design for sampling from finite populations
(e.g., Thompson, 2012).

A number of variations of ego-centric sampling designs
are possible. First, some ego-centric sampling designs
identify alters, so that it is known whether two egos nom-
inated the same alter. Second, other ego-centric sampling
designs ask egos to report which pairs of alters have edges
(Smith et al., 1972–2016). Third, an important extension
of ego-centric sampling is link-tracing. Link-tracing ex-
ploits the observed edges of sampled nodes to include ad-
ditional nodes into the sample, provided that the identities
of the egos and alters of sampled nodes are known. One
specific form of k-wave link-tracing samples nodes and
edges as follows (Thompson and Frank, 2000):

1. Wave l = 0: Generate an ego-centric sample.
2. Wave l = 1, . . . , k:

(a) Add the nodes who are linked to the population
members of wave l − 1 to the sample.

(b) For each added node, record edges.

Ego-centric sampling can be considered to be a special
case of k-wave link-tracing with k = 0. Additional ex-
amples of link-tracing are snowball sampling (Goodman,
1961) and respondent-driven sampling (Heckathorn, 1997,
Salganik and Heckathorn, 2004, Gile and Handcock,
2010, Gile, 2011). Some link-tracing sampling designs,
such as respondent-driven sampling, may not generate
probability samples, but approximate probability sam-
ples when suitable sampling designs are used (Kurant,
Markopoulou and Thiran, 2011, Gile, 2011).

5.2.2 Sampling pairs of nodes: Edge sampling. While
ego-centric sampling and link-tracing sample edges indi-
rectly by first sampling nodes and then recording edges
of sampled nodes, one can sample edges directly. One ex-
ample is a sampling design that samples spouses from a
sampling frame of married couples, that is, which samples
pairs of nodes connected by an edge (here, marriage). A
theoretical treatment of edge sampling can be found in
Crane and Dempsey (2018, 2020) and Crane (2018).

5.2.3 Sampling subgraphs. An alternative approach is
based on sampling a subset of nodes N′ ⊆ N and collect-
ing information about the whole subgraph yN′ of yN in-
duced by N′ ⊆ N. Sampling subgraphs is distinct from
ego-centric sampling and link-tracing, because subgraph
sampling collects information about all edges among
nodes in N′ but does not collect information about edges
between nodes in N′ and nodes in N \ N′, which ego-
centric sampling and link-tracing do. The most widely
used form of subgraph sampling is multilevel sampling
(Snijders and Bosker, 2012, Lazega and Snijders, 2016).
Consider a population of nodes N partitioned into sub-
populations A1, . . . ,AK . Suppose that a subset of sub-
populations S ⊆ {1, . . . ,K} is sampled and that the sub-
graphs yAk

induced by the sampled subpopulations Ak

with k ∈ S are observed. A simple example of a multilevel
sample is a sample of school classes from a population
of school classes, generated by any sampling design for
sampling from finite populations (e.g., Thompson, 2012).
If all students in the sampled school classes are asked to
report edges to other students in the same school class,
the subgraphs induced by the sampled school classes are
observed.

5.2.4 Missing data. In addition to design-based miss-
ingness due to sampling, there may be out-of-design miss-
ingness due to, among other things, non-response of re-
spondents in network surveys (Gile and Handcock, 2006,
Handcock and Gile, 2010, Koskinen, Robins and Patti-
son, 2010). Out-of-design missingness is not under the
control of researchers, but is ignorable for the purpose of
likelihood-based super and infinite population inference
under certain conditions, detailed in Section 5.2.5.

5.2.5 Ignorable incomplete-data generating processes.
An important concept in likelihood-based super and infi-
nite population inference given incomplete data is the no-
tion of ignorability due to Rubin (1976). An incomplete-
data generating process is ignorable for the purpose of
estimating the parameters of the population probability
model provided:

(a) the probability of not observing the value of an
edge variable Yi,j does not depend on the value of Yi,j ;

(b) the parameters of the complete- and incomplete-
data generating process are variation-independent (Gile
and Handcock, 2006, Handcock and Gile, 2010, Koskinen,
Robins and Pattison, 2010).
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A more formal description of ignorable incomplete-data
generating processes can be found in Section 6.

Examples of ignorable incomplete-data generating pro-
cesses include ego-centric sampling and link-tracing,
edge sampling, subgraph sampling and data missing at
random, but exclude respondent-driven sampling
(Lunagomez and Airoldi, 2014). We refer to Gile and
Handcock (2006), Handcock and Gile (2010), and
Koskinen, Robins and Pattison (2010) for likelihood-
based inference with ignorable incomplete-data gen-
erating processes and Lunagomez and Airoldi (2014)
for likelihood-based inference with non-ignorable in-
complete-data generating processes. We discuss
likelihood-based inference given incomplete data, gener-
ated by ignorable incomplete-data generating processes,
in Section 6.

6. LIKELIHOOD-BASED INFERENCE GIVEN
INCOMPLETE DATA GENERATED BY IGNORABLE

INCOMPLETE-DATA PROCESSES

We describe likelihood-based inference for well-posed
ERGMs, based on incomplete data generated by ignorable
incomplete-data processes. We focus here on the maxi-
mum likelihood approach of Handcock and Gile (2010),
and note that Koskinen, Robins and Pattison (2010) de-
scribe a Bayesian approach. Both of them are based on the
principled approach of Rubin (1976) to likelihood-based
inference in incomplete-data scenarios.

To describe the likelihood-based approach of Handcock
and Gile (2010), denote by A the |N| × |N|-matrix with
elements Ai,j ∈ {0,1}, where Ai,j = 1 if the value yi,j of
Yi,j is observed and Ai,j = 0 otherwise (i < j, i, j ∈ N;
elements on the main diagonal of A, and below the main
diagonal, are undefined). The matrix A can deal with all
forms of incomplete observations of the population graph,
whether data are unobserved due to node sampling, edge
sampling, subgraph sampling, missing data or any com-
bination of the aforementioned incomplete-data generat-
ing processes. Let S = {i < j : i, j ∈ N,Ai,j = 1} be the
set of pairs of nodes with observed data and yS = {yi,j :
i < j, i, j ∈ S} be the observed data. The incomplete-
data generating process is called ignorable for the purpose
of likelihood-based inference for the parameter θ of the
complete-data generating process provided:

(a) Pα(A = a | YN = yN) = Pα(A = a | YS = yS),
where α is the parameter of the incomplete-data gener-
ating process (e.g., the elements of α may be sample in-
clusion probabilities);

(b) the parameters α and θ of the complete- and
incomplete-data generating process are variation-
independent in the sense that the parameter space is a
product space.

In other words, the incomplete-data generating process
is ignorable as long as the probability of being unob-
served does not depend on the nature of the unobserved
data. Handcock and Gile (2010) demonstrated that many
sampling designs are ignorable, including ego-centric and
link-tracing sampling designs.

If the incomplete-data generating process is ignorable,
the likelihood function factorizes as follows:
L(α, θ;yS)

∝ ∑
yN∈YN(yS )

Pα(A = a | YS = yS) PN,η(θ ,N)(YN = yN)

∝ Pα(A = a | YS = yS)︸ ︷︷ ︸× ∑
yN∈YN(yS )

PN,η(θ ,N)(YN = yN)

︸ ︷︷ ︸
∝ L(α;yS) × L(θ;yS),

where YN(yS) is the subset of graphs yN ∈ YN compati-
ble with the observed data yS .

As a consequence, as long as the incomplete-data gen-
erating process is ignorable, likelihood-based inference
for

• the parameter α can be based on the likelihood function
L(α;yS);

• the parameter θ can be based on the likelihood function
L(θ;yS).

As pointed out in Section 3.2.2, the likelihood func-
tion L(θ;yS) is based on marginalizations of the pop-
ulation probability mass function, regardless of whether
the model is projective. Therefore, the likelihood func-
tion L(θ;yS) is not affected by lack of projectivity. In
other words, statistical inference that respects both the
complete- and incomplete-data generating process and is
based on the likelihood function is not affected by lack of
projectivity.

Computational methods for likelihood-based inference
given incomplete data are described by Handcock and
Gile (2010) and Koskinen, Robins and Pattison (2010).
Other work on statistical inference given incomplete
data can be found in Snijders (2010), Pattison et al.
(2013), Krivitsky and Morris (2017), Karwa, Krivitsky
and Slavković (2017) and Gile and Handcock (2017).

7. CONSISTENCY AND ASYMPTOTIC NORMALITY
OF ESTIMATORS

We review consistency and asymptotic normality re-
sults for likelihood-based estimators of well-posed
ERGMs in finite, super and infinite population scenarios.
These results demonstrate that likelihood-based inference
for well-posed ERGMs is possible. We do not consider
statistical inference for ill-posed ERGMs, because infer-
ring models which are known to be ill-posed and which
are not believed to have generated observed network data
is not meaningful.
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7.1 Finite Population Inference

Finite population inference focuses on functions of the
population graph, such as the number of edges in the pop-
ulation graph, and does not assume that the population
graph was generated by a population probability model.
If the whole population graph is observed, there is no un-
certainty. However, when a sample from the population
graph is generated—as described in Section 5.2—there is
uncertainty due to the unobserved edges in the popula-
tion graph. In such situations, two forms of consistency
are available for estimators of population quantities based
on sample quantities: Fisher-consistency and consistency
and asymptotic normality under sampling.

First, many estimators of population quantities are
Fisher-consistent (Fisher, 1922). In other words, when the
whole population graph is observed, the estimator of the
population quantity of interest is equal to the population
quantity. An example is an estimator of the proportion of
edges in the population graph based on the proportion of
edges in a sample.

Second, it is often possible to write functions of the
population graph of interest in terms of weighted pop-
ulation totals. In such settings, one can construct classi-
cal Horvitz–Thompson estimators for the weighted pop-
ulation total of interest, whose properties follow from
the sampling design and often include consistency and
asymptotic normality under sampling (Gjoka, Smith and
Butts, 2015).

Last, but not least, consider the following function of
the attributes of the population of nodes, xN, and the pop-
ulation graph, yN, which we reviewed in Section 5.1.1:

θ(xN,yN) = arg max
θ ′∈�

(〈
η
(
θ ′,N

)
, s(xN,yN)

〉 − ψ
(
θ ′,N

))
.

Consider the case where the population quantity
s(xN,yN) is unknown, which implies that θ(xN,yN)

is unknown. If an ego-centric sample is generated—as
described in Section 5.2.1—and s(xN,yN) is estimated
from the ego-centric sample, then the resulting estima-
tor of θ(xN,yN) is consistent and asymptotically nor-
mal, provided s(xN,yN) can be reconstructed from ego-
centric observations of all members of the population N

(Krivitsky and Morris, 2017).

7.2 Super Population Inference

Super population inference is concerned with a finite
population of nodes N and a population graph defined
on N, generated by a population probability model. We
review here concentration and consistency results for
likelihood-based estimators of well-posed ERGMs with
block structure in super population scenarios. We con-
sider both complete-data scenarios, where the whole pop-
ulation graph is observed, and incomplete-data scenarios,
where subgraphs are sampled by ignorable sampling de-
signs. These concentration and consistency results respect

the fact that the population of nodes is finite and cover all
finite populations with K ≥ 2 blocks, although the results
are most interesting when K is large.

We assume that the population graph was generated by
an ERGM with observed block structure, as described
in Section 4.3, consisting of within-block ERGMs with
block-dependent edge and GWESP terms and between-
block ERGMs with block-dependent edge terms. In other
words, the sufficient statistics of the within-block ERGMs
count the number of edges and the number of connected
pairs of nodes with 1, . . . , |Ak| − 2 shared partners in
block Ak , and the natural parameters of the within-block
ERGMs are

ηk,1(θ,N) = θ1,

ηk,1+m(θ,N) = exp(ϑ)
[
1 − (

1 − exp(−ϑ)
)m]

,

where m = 1, . . . , |Ak| − 2 and k = 1, . . . ,K . Here, θ2 =
exp(ϑ) ∈ (0,1), so � = R × (0,1). We assume hence-
forth that parameters of the within- and between-block
ERGMs are variation-independent, that is, the parameter
space is a product space.

The following finite population concentration and con-
sistency results are taken from Corollaries 1 and 2 of
Schweinberger and Stewart (2020). The first result as-
sumes that the whole population graph is observed,
whereas the second result assumes that a sample of blocks
is generated by an ignorable sampling design and the sub-
graphs induced by the sampled blocks are observed.

THEOREM 1. Suppose that a finite population of
nodes N is partitioned into K blocks A1, . . . ,AK , where
the size of the smallest block is at least 4 and the size of the
largest block is a constant multiple of the smallest block,
and is bounded above by a finite constant. Let θ ∈ � be
the data-generating parameter and θ̂ be the maximum
likelihood estimator based on a complete observation of
the population graph YN. Then, for all ε > 0, there exist
δ(ε) > 0 and C1 > 0 such that, for all K ≥ 2,

P
(‖θ̂ − θ‖2 < ε

) ≥ 1 − 4 exp
(−δ(ε)2 C1 K

)
,

where ‖θ̂ − θ‖2 denotes the �2-distance between θ̂ and θ .

More refined, and more general results on maximum
likelihood and M-estimators, covering full and non-full,
curved exponential-family models of random graph with
correct and incorrect model specifications, can be found
in Schweinberger and Stewart (2020).

Theorem 1 is a finite population concentration and con-
sistency result in the sense that it applies to all finite pop-
ulations with K ≥ 2 blocks and shows that the probabil-
ity mass of maximum likelihood estimator θ̂ concentrates
around the data-generating parameter θ , provided that K

is sufficiently large. Note that these results extend to many
other ERGMs with block structure (Schweinberger and
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Stewart, 2020). An important special case is given by K

independent graphs YA1, . . . ,YAK
defined on non-empty,

disjoint sets of nodes A1, . . . ,AK , where edges between
sets of nodes A1, . . . ,AK are absent with probability 1.
An example is the K = 108 human brain networks used in
Section 8, where connections between brains are impossi-
ble. Theorem 1 provides a lower bound on the probability
of event ‖θ̂ − θ‖2 < ε.

Theorem 1 assumes that the whole population graph
can be observed. When it is infeasible to observe the
whole population graph, but it is feasible to sample blocks
by using an ignorable sampling design and observing the
subgraphs induced by the sampled blocks, then the fol-
lowing finite-sample concentration result can be obtained.

THEOREM 2. Suppose that a sample of blocks L ⊆
{A1, . . . ,AK} is generated by an ignorable sampling de-
sign and that the subgraphs of the population graph in-
duced by the sampled blocks are observed. Let θ ∈ � be
the data-generating parameter and θ̂L be the maximum
likelihood estimator based on the subgraphs induced by
L ⊆ {A1, . . . ,AK}. Then, under the assumptions of The-
orem 1, for all ε > 0, there exist δ(ε) > 0 and C2 > 0 such
that, for all |L| ≥ 2,

P
(‖θ̂L − θ‖2 < ε

) ≥ 1 − 4 exp
(−δ(ε)2 C2 |L|).

The difference between Theorems 1 and 2 is that the to-
tal number of subpopulations |K| is replaced by the num-
ber of sampled blocks |L|. If the population is finite but
large, in the sense that the number of blocks K and the
number of sampled blocks |L| are sufficiently large, then
the probability of event ‖θ̂L − θ‖2 < ε is close to 1.

It is worth comparing these results to Chatterjee and Di-
aconis (2013). Chatterjee and Diaconis (2013) considered
infinite populations without additional structure, resem-
bling Ising models in physics without lattice structure and
discrete Markov random fields in spatial statistics without
spatial structure, and allowed edges to depend on many
other edges. Many of the resulting models are ill-posed—
as discussed in Section 3.1—and consistent estimation of
such ill-posed models may not be possible. In contrast,
the concentration and consistency results stated above are
based on:

• finite populations;
• populations with additional structure in the form of

subpopulations;
• short-range dependence, in the sense that dependence

is restricted to subpopulations;
• within subpopulations, curved exponential-family pa-

rameterizations ensure that the added value of addi-
tional triangles decreases.

Indeed, the most important implication of Theorems
1 and 2 is that sensible assumptions give rise to sensi-
ble concentration and consistency results for well-posed

ERGMs with additional structure in super and infinite
population scenarios. The infinite population case is re-
viewed in Section 7.3.3.

7.3 Infinite Population Inference

We turn to consistency and asymptotic normality results
for likelihood-based estimators of well-posed ERGMs in
infinite population scenarios, including projective ERGMs
(Section 7.3.1), dyad-independent ERGMs (Section 7.3.2)
and dyad-dependent ERGMs (Section 7.3.3). These re-
sults cover both projective and non-projective ERGMs,
showing that consistency and asymptotic normality re-
sults can be obtained for likelihood-based estimators of
well-posed ERGMs despite lack of projectivity.

In addition to the work discussed below, Xiang and
Neville (2011) showed that consistency results can be ob-
tained under weak dependence assumptions, but did not
give any example of an ERGM with non-trivial depen-
dence that satisfies those weak dependence assumptions;
and Mukherjee (2020) established consistency results for
models with functions of degrees as sufficient statistics.

7.3.1 Projective ERGMs. The first set of consistency
results concerns projective ERGMs.

Examples of projective ERGMs are Bernoulli(π) ran-
dom graphs with size-invariant edge probability π and
other dyad-independent ERGMs with size-invariant nat-
ural parameters of fixed dimension satisfying

η
(
θ,N′) = θ for all θ ∈ � and all N′ ⊆ N

and

PN′,θ (YN′ = yN′) = PN,θ (YN′ = yN′,YN\N′ ∈ YN\N′).

Assuming projectivity, Shalizi and Rinaldo (2013) proved:

THEOREM 3. Let N1,N2, . . . be a sequence of sets
of nodes and YN1,YN2, . . . be a sequence of random
graphs governed by a sequence of projective ERGMs
PN1,η(θ ,N1),PN2,η(θ ,N2), . . . , where Nk = {1, . . . , k} and
η(θ ,N′

k) = θ for all N′
k ⊆ Nk (k = 1,2, . . . ). Then the

maximum likelihood estimator θ̂ |N| based on YN is a
strongly consistent estimator of θ as |N| → ∞.

The results of Shalizi and Rinaldo (2013) extend to
dyad-independent ERGMs with covariates.

7.3.2 Dyad-independent ERGMs. Most existing con-
sistency and asymptotic normality results concern dyad-
independent ERGMs. Examples are consistency and
asymptotic normality results for β-models and p1-models
(Chatterjee, Diaconis and Sly, 2011, Rinaldo, Petrović
and Fienberg, 2013, Krivitsky and Kolaczyk, 2015, Yan,
Zhao and Qin, 2015, Yan, Leng and Zhu, 2016, Yan, Qin
and Wang, 2016, Yan et al., 2019, Mukherjee, Mukherjee
and Sen, 2018). We present here two interesting exam-
ples, one with node-dependent parameters and one with
size-dependent parameters.
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The first example concerns p1-models for directed ran-
dom graphs with node-dependent parameters (Yan, Leng
and Zhu, 2016). Under p1-models without reciprocity, the
directed edges are independent Bernoulli(πi,j ) random
variables with edge probabilities πi,j = logit−1(αi + βj )

and natural parameters ηi,j (θ ,N) = αi + βj , where θ =
(α1, . . . , α|N|, β1, . . . , β|N|). To make the model identifi-
able, Yan, Leng and Zhu (2016) set β|N| = 0, so θ ∈
R

2|N|−1. The following result follows from Theorems 1
and 2 of Yan, Leng and Zhu (2016).

THEOREM 4. Let N1,N2, . . . be a sequence of sets of
nodes and YN1,YN2, . . . be a sequence of random graphs
governed by a sequence of p1-models without reciprocity
PN1,η(θ ,N1), PN2,η(θ,N2), . . . , where Nk = {1, . . . , k} (k =
1,2, . . . ). Assume that ‖θ‖∞ ≤ τ log |N|, where 0 < τ <

1/44 and ‖θ‖∞ = max1≤i≤2|N|−1 |θi |. Then

• with a probability approaching 1, the maximum likeli-
hood estimator θ̂N based on YN exists, is unique, and

‖θ̂N − θ‖∞
p−→0 as |N| → ∞.

• for any fixed k ≥ 1, the vector consisting of the first k el-
ements of θ̂N − θ is asymptotically multivariate normal
with mean vector zero and variance-covariance matrix
given by the corresponding k × k block of the inverse
Fisher information matrix as |N| → ∞.

It may be surprising that consistent estimation of the pa-
rameter θ of dimension 2|N| − 1 is possible. Note, how-
ever, that the number of independent observations from
the p1-model without reciprocity is |N|(|N| − 1), so the
number of independent observations (which is quadratic
in |N|) grows faster than the number of parameters (which
is linear in |N|). We note that additional results on p1-
models with reciprocity and covariates exist (Chatterjee,
Diaconis and Sly, 2011, Rinaldo, Petrović and Fienberg,
2013, Krivitsky and Kolaczyk, 2015, Yan, Zhao and Qin,
2015, Yan, Leng and Zhu, 2016, Yan, Qin and Wang,
2016, Yan et al., 2019).

The second example concerns sparse Bernoulli(π|N|)
random graphs with size-dependent edge probabilities
π|N| = logit−1(θ − log |N|) and natural parameters
η(θ,N) = θ − log |N|. The following result is based on
Theorem 3.1 of Krivitsky and Kolaczyk (2015).

THEOREM 5. Let N1,N2, . . . be a sequence of sets
of nodes and YN1,YN2, . . . be a sequence of random
graphs governed by a sequence of sparse Bernoulli ran-
dom graph models PN1,η(θ,N1),PN2,η(θ,N2), . . . , where
Nk = {1, . . . , k} (k = 1,2, . . . ). Then the maximum like-
lihood estimator θ̂|N| based on YN is consistent and√|N|(θ̂|N| − θ)

d−→N(0, exp(−θ)) as |N| → ∞.

Other consistency and asymptotic normality results
for sparse and dense ERGMs with dyad-independence
can be found in Krivitsky and Kolaczyk (2015). Sparse

ERGMs with dyad-independence are not projective: for
example, sparse Bernoulli(π|N|) random graphs with size-
dependent edge probabilities π|N| = logit−1(θ − log |N|)
are not projective, as shown in Section 3.2. There-
fore, these consistency and asymptotic normality results
demonstrate that, when meaningful sequences of random
graph models are specified and larger graphs contain more
information than smaller graphs, consistency and asymp-
totic normality results for size-invariant parameters are
possible despite lack of projectivity.

7.3.3 Dyad-dependent ERGMs. The following result
shows that maximum likelihood estimators of curved
ERGMs with block structure are consistent. The result
follows from Theorem 1 in Section 7.2.

THEOREM 6. Let A1,A2, . . . be a sequence of blocks,
N1,N2, . . . be a sequence of sets of nodes defined by
NK = ⋃K

k=1 Ak , K = 1,2, . . . , and YN1,YN2, . . . be a
sequence of random graphs governed by a sequence of
curved ERGMs with block-dependent edge and GWESP
terms PN1,η(θ,N1), PN2,η(θ,N2), . . . Under the assump-
tions of Theorem 1, the maximum likelihood estimator
θ̂K based on YNK

is a consistent estimator of the data-
generating parameter θ as K → ∞.

Theorem 6 shows that likelihood-based inference for
well-posed ERGMs with additional structure and non-
trivial dependence structure is possible despite lack of
projectivity. As noted in Section 7.2, these results extend
to other well-posed ERGMs with block structure.

8. APPLICATION TO HUMAN BRAIN NETWORKS

To demonstrate likelihood-based inference for well-
posed ERGMs in super population scenarios, we use
human brain network data. A short discussion of how
ERGMs can be used in neuroscience applications can
be found in the survey paper of Simpson, Bowman and
Laurienti (2013). Some recent applications of ERGMs
to human brain network data can be found in Simpson,
Hayasaka and Laurienti (2011), Simpson, Moussa and
Laurienti (2012), Sinke et al. (2016), and Obando and
De Vico Fallani (2017). We use here the human brain net-
work data of Obando and De Vico Fallani (2017).

Obando and De Vico Fallani (2017) extracted data from
the online PhysioNet BCI data base (Goldberger et al.,
2000, Schalk et al., 2004), consisting of EEG recordings
from 108 human subjects. The EEG recordings cover 56
regions within each subject’s brain, over four frequency
bands in two states, “eyes closed” and “eyes open.” We
use the same data as Obando and De Vico Fallani (2017),
focusing on the beta-frequency band in the “eyes open”
state. The data, thresholded by Obando and De Vico Fal-
lani (2017), are binary, that is, Yi,j ∈ {0,1}, and undi-
rected, that is, Yi,j = Yj,i with probability 1. Here, Yi,j =
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1 can be interpreted as an indicator of a strong connection
between brain regions i and j . A more detailed descrip-
tion of the data can be found in Obando and De Vico Fal-
lani (2017). Last, but not least, note that the 108 brain net-
works are fully observed, although we subsample the 108
brain networks in Section 8.4 to demonstrate incomplete-
data maximum likelihood estimation.

Goal of statistical inference. The population of inter-
est consists of 56 regions of the human brain. The goal
of statistical inference is super population inference: we
want to infer the probability law that governs connections
between these 56 regions of the human brain based on
108 replications. Note that the size of the human brain is
bounded above by the size of the human skull and, there-
fore, brain networks cannot grow without bound, so infi-
nite population inference based on sequences of graphs of
increasing size is not interesting here.

Population probability models. As a population proba-
bility model, we use a curved ERGM capturing connectiv-
ity and transitivity in the 108 human brain networks. We
compare the curved ERGM to latent space cluster mod-
els, which capture a stochastic tendency towards transi-
tivity and are the main competitors of curved ERGMs for
the purpose of capturing transitivity. In addition, we use
the Bernoulli(π) random graph model with size-invariant
edge probability π as the primary example of a projective
ERGM.

Curved ERGM. We use a curved ERGM with two lev-
els of multilevel structure, with level-1 units correspond-
ing to the 56 brain regions and level-2 units correspond-
ing to the 108 brains. The probability mass function of the
curved ERGM is of the form

PN,η(θ ,N)(YN = yN)

=
108∏
k=1

P{Nk,Nk},η(θ ,N)(YNk,Nk
= yNk,Nk

),

where Nk = {1, . . . ,56} and yNk,Nk
is the observed net-

work of brain k, and

P{Nk,Nk},η(θ ,N)(YNk,Nk
= yNk,Nk

)

∝ exp

⎛
⎝ 63∑

m=1

ηm(θ ,Nk) sm(yNk,Nk
)

⎞
⎠ .

The sufficient statistics of the model are:

• s1(yNk,Nk
) is the number of edges in brain k;

• s2(yNk,Nk
), . . . , s8(yNk,Nk

) are the number of nodes
with 0, . . . ,6 edges in brain k, respectively;

• s9(yNk,Nk
) is the number of paths of length two in brain

k;
• s10(yNk,Nk

), . . . , s63(yNk,Nk
) are the number of con-

nected pairs of nodes with 1, . . . ,56−2 shared partners
in brain k, respectively.

The natural parameters of the model are:

ηm(θ ,Nk) = θm, m = 1, . . . ,9,

η9+1(θ ,Nk) = θ10

+ θ12 exp(θ13)
[
1 − (

1 − exp(−θ13)
)]

,

η9+2(θ ,Nk) = θ11

+ θ12 exp(θ13)
[
1 − (

1 − exp(−θ13)
)2]

,

η9+m(θ ,Nk) = θ12 exp(θ13)
[
1 − (

1 − exp(−θ13)
)m]

,

where m = 3, . . . ,56 − 2 and � = R
13. The resulting

model is a curved ERGM with a shifted GWESP term,
shifted in the sense that the natural parameters of the num-
bers of connected pairs of nodes with 1 and 2 shared part-
ners are shifted by θ10 and θ11, respectively. If θ10 = 0 and
θ11 = 0, the shifted GWESP term reduces to the unshifted
GWESP term. The shifted GWESP term offers more flex-
ibility than the unshifted GWESP term and we found that
the shifted GWESP term improves in-sample and out-
of-sample performance relative to the unshifted GWESP
term. The model is identifiable as long as θ12 = 0 and the
number of nodes is at least 5, so that with positive prob-
ability there are connected pairs of nodes with 3 or more
shared partners; note that θ12 = 0 implies that θ13 can-
not be estimated, because θ12 = 0 eliminates the GWESP
term. The number of nodes must be at least 5, because
η10(θ ,Nk) = θ10 + θ12 and η11(θ,Nk) = θ11 + θ12 when
θ13 = 0, so adding a constant c = 0 to θ10 and θ11 and sub-
tracting c from θ12 does not change the likelihood func-
tion when the number of nodes is smaller than 5. Note that
values θ13 < − log 2 are identifiable, but induce a form of
model near-degeneracy when |Nk| is large, as explained in
Section 3.1.3. It is possible to constrain the maximization
of the likelihood function to θ13 ≥ − log 2, but it is rarely
worth enforcing the constraint, in part because |Nk| = 56
is small and in part because unconstrained Monte Carlo
maximum likelihood algorithms typically do not venture
into (−∞,− log 2). A possible explanation is that the
probability of network data is higher on [− log 2,+∞)

than (−∞,− log 2), where the model is near-degenerate
and places low probability mass on graphs that resemble
real-world networks, so the likelihood function is lower
on (−∞,− log 2) than [− log 2,+∞).

We used R package hergm (Schweinberger and Luna,
2018) to estimate the curved ERGM by Monte Carlo max-
imum likelihood methods. The estimates, along with stan-
dard errors, are shown in Table 1.

Latent space models. To compare curved ERGMs to
other models capturing transitivity, we use latent space
cluster models with node-dependent propensities to form
edges, which generalize β-models, stochastic block mod-
els and latent space models. Suppose that each node i has
a latent position zi ∈ R

3, edges are independent condi-
tional on the positions of nodes, and the log odds of the
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FIG. 3. Latent space model: BIC based on q = 1, . . . ,6 components (left) and estimated positions of the 56 nodes in R
3 based on q = 2 compo-

nents (right). The edges are not shown, because the three-dimensional plots produced by R package latentnet can represent binary edges, but
cannot represent counts of the number of edges between brain regions based on 108 replications.

TABLE 1
Monte Carlo maximum likelihood estimates, including standard

errors, of all parameters in the curved ERGM, with the exception of
the (nuisance) parameters θ2, . . . , θ8.

Parameter Estimate Standard error

θ1 Edge parameter −4.972 0.560
θ9 Two-path parameter −0.091 0.033
θ10 GWESP shift parameter 0.198 0.024
θ11 GWESP shift parameter 0.305 0.022
θ12 GWESP base parameter 1.061 0.018
θ13 GWESP decay parameter 1.565 0.028

conditional probability of an edge between nodes i and j

in brain k given the positions of nodes i and j is

log
PN,α,β(Yi,j = 1 | zi ,zj )

1 − PN,α,β(Yi,j = 1 | zi ,zj )

= α + βi + βj − ‖zi − zj‖2,

where α ∈ R can be interpreted as the overall propen-
sity to form edges in the population and βi ∈ R and
βj ∈ R can be interpreted as the deviations of nodes i

and j , respectively. Since adding a constant c = 0 to
α and subtracting c/2 from parameters β1, . . . , β56 does
not change the conditional probability of an edge, we set
β1 = 0. The positions of nodes are drawn from a mul-
tivariate Gaussian mixture distribution with q multivari-
ate Gaussian component distributions, as in Handcock,
Raftery and Tantrum (2007). The resulting models can be
considered as generalizations of the β-models described
in Section 4.1, which assume that the log odds of the
probability of an edge is βi + βj . The additional term
−||zi − zj ||2 can be interpreted as a penalty, which dis-
courages edges between nodes separated by large dis-
tances. The fact that the positions of nodes are generated

from a multivariate Gaussian mixture distribution with q

components implies that the set of nodes is partitioned
into q subsets, so one can view the resulting model as
a generalization of stochastic block models. Such latent
space models—generalizing β-models (e.g., Chatterjee,
Diaconis and Sly, 2011), stochastic block models (e.g.,
Nowicki and Snijders, 2001), latent space models (e.g.,
Hoff, Raftery and Handcock, 2002) and latent space clus-
ter models (Handcock, Raftery and Tantrum, 2007)—
were proposed by Krivitsky et al. (2009).

We used R package latentnet (Krivitsky and Hand-
cock, 2008) to estimate the latent space model. The num-
ber of components q was selected by BIC, as recom-
mended by Handcock, Raftery and Tantrum (2007). The
BIC shown in Figure 3 suggests to choose q = 2 com-
ponents. All of the following results are based on q = 2
components. The estimated positions of the 56 nodes in
R

3 based on q = 2 components can be seen in Figure 3.
Bernoulli random graph model. We use the

Bernoulli(π) random graph model with size-invariant
edge probability π as the primary example of a projec-
tive ERGM. The Bernoulli(π) random graph model has
population probability mass function

PN,η(θ,N)(YN = yN)

=
108∏
k=1

P{Nk,Nk},η(θ,N)(YNk,Nk
= yNk,Nk

),

where

P{Nk,Nk},η(θ,N)(YNk,Nk
= yNk,Nk

)

∝ exp

⎛
⎝η(θ,N)

∑
i<j : i,j∈Nk

yi,j

⎞
⎠

with natural parameter η(θ,N) = logit(π) = θ ∈ R.
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Other random graph models. We do not use β-models
and stochastic block models (e.g., Nowicki and Snijders,
2001), because both can be viewed as special cases of the
latent space model described above. In addition, these and
other models are not designed to capture transitivity, so
comparing them to the curved ERGM and latent space
model would be unfair to them.

8.1 In-Sample Performance

We first compare the in-sample performance of the
Bernoulli random graph model, the latent space model
and the curved ERGM in terms of geodesic distances (the
length of the shortest path between dyads); the number
of nodes with degree m (the number of nodes with m

edges); the number of connected dyads with m triangles;
and the total number of triangles; note that a dyad refers
to a pair of nodes. All statistics are aggregated over the
108 brain networks. The first two statistics help assess the
in-sample performance of models in terms of connectiv-
ity and reachability, whereas the other two help assess the
in-sample performance in terms of transitivity.

The in-sample performance of the three models in terms
of these statistics is shown in Figure 4. At least two in-
teresting observations can be made. First, while some
simplistic ERGMs lacking structure are indistinguishable
from Bernoulli random graphs in the large-graph limit—
as discussed in Section 3.1—the in-sample performance
of the curved ERGM is very different from the in-sample
performance of the Bernoulli random graph model. In-
deed, the in-sample performance of the curved ERGM
is far superior to the Bernoulli random graph model in
terms of both connectivity and transitivity. Second, Fig-
ure 4 highlights a limitation of latent space models: while
the latent space model induces a stochastic tendency to-
wards transitivity, it is not a flexible model of transitiv-
ity, and it is not able to match the observed tendency to-
wards transitivity. In fact, the latent space model has 56
unrestricted parameters α, β2, . . . , β56 and 56 latent vari-
ables z1, . . . ,z56, but it is outperformed by the curved
ERGM with 13 unrestricted parameters θ1, . . . , θ13, both
in terms of connectivity and transitivity. Last, but not
least, it is worth noting that the latent space model is not
able to match the observed numbers of nodes with degrees
0,1, . . . While the reasons are unclear, it is crystal-clear
why the curved ERGM is able to match the observed num-
bers of nodes with degrees 0, . . . ,6: the numbers of nodes
with degrees 0, . . . ,6 are sufficient statistics of the curved
ERGM and, under the maximum likelihood estimate, the
expected and observed numbers of nodes with degrees
0, . . . ,6 are equal. Note that the numbers of nodes with
degrees 7,8, . . . are not sufficient statistics of the curved
ERGM, but the tail of the degree distribution seems to be
captured by the other model terms.

8.2 Out-of-Sample Performance

We assess the out-of-sample performance of the best-
fitting model, the curved ERGM, by sampling 75% of the
108 brains at random and estimating the curved ERGM
from the sampled brain networks. We then generated
model-based predictions of the 25% non-sampled brain
networks based on the estimated curved ERGM.

Figure 5 suggests that the curved ERGM has high pre-
dictive power in terms of connectivity and transitivity: the
model-based predictions are close to the observed statis-
tics. The strong out-of-sample performance lends cre-
dence to the assumption that the 108 brain networks were
generated by a common data-generating mechanism.

8.3 Sampling Brains: More Data Helps Estimate
Parameters

To show that more data helps estimate parameters, we
sampled 25%, 50% and 75% of the brains at random and
observed the whole brain network of each sampled brain.
We performed the described procedure 50 times.

Figure 6 shows that the Monte Carlo maximum likeli-
hood estimates based on samples of brain networks ap-
proach the corresponding Monte Carlo maximum likeli-
hood estimates based on all 108 brain networks, demon-
strating that observing more networks does indeed im-
prove parameter estimates.

8.4 Subsampling Brains: Incomplete-Data Maximum
Likelihood Estimation

To illustrate likelihood-based inference based on in-
complete data generated by ignorable incomplete-data
processes, we sampled 50% and 75% of the nodes in each
of the 108 brain networks at random and observed the
edges of all sampled nodes. We used the incomplete-data
Monte Carlo maximum likelihood procedure described in
Section 6 to estimate the parameters from sampled sub-
graphs. We performed the procedure 50 times.

The results in Figure 7 show that incomplete-data
Monte Carlo maximum likelihood estimates approach the
Monte Carlo maximum likelihood estimates based on ob-
serving 100% of the nodes in the 108 brain networks.
These results underscore that statistical inference from
subgraphs to population graphs is possible despite lack of
projectivity, as long as statistical inference is based on the
likelihood function.

8.5 How to Deal with Graphs of Different Sizes

The human brain network application in Sections 8.1–
8.4 demonstrates that curved ERGMs can outperform la-
tent space models in super population scenarios where
a population probability model generates graphs of the
same size. A legitimate question to ask is how one can
deal with super population scenarios where a popula-
tion probability model generates graphs of different sizes.
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FIG. 4. In-sample performance of the Bernoulli model, the latent space model, and the curved ERGM. The red lines and curves indicate the
observed values of the statistics.

FIG. 5. Out-of-sample performance of the curved ERGM, using 75% of the brain networks to estimate the curved ERGM and 25% of the brain
networks to generate model-based predictions. The black curves are the model-based predictions, whereas the red curves are the observations.

FIG. 6. Sampling brains: Monte Carlo maximum likelihood estimates of the most interesting parameters, the parameters θ10, . . . , θ13 of the shifted
GWESP term capturing transitivity, based on observing 25%, 50%, 75%, and 100% of the 108 brain networks.
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FIG. 7. Subsampling brains: incomplete-data Monte Carlo maximum likelihood estimates of the most interesting parameters, the parameters
θ10, . . . , θ13 of the shifted GWESP term capturing transitivity, based on observing 50%, 75%, and 100% of the nodes in the 108 brain networks.

Such scenarios arise in applications of ERGMs with block
structure (Section 4.3) and multilevel structure (Sec-
tion 4.4).

There are at least three approaches to accounting for
different network sizes:

(a) size-dependent natural parameters using size-
dependent offsets (Krivitsky, Handcock and Morris, 2011,
Krivitsky and Kolaczyk, 2015, Butts and Almquist, 2015,
Stewart et al., 2019);

(b) size-dependent natural parameters using network
size as a covariate (Slaughter and Koehly, 2016);

(c) network-specific natural parameters with common
mean and network-specific deviations (random effects)
(Schweinberger and Handcock, 2015).

All of them assume that the natural parameters have the
form

natural parameter = size-invariant parame-
ter + size-dependent deviation,

so that the resulting natural parameters are size-dependent,
and the goal of statistical inference is to estimate the size-
invariant parameters.

9. CONCLUSIONS

The ERGM framework is widely used in practice, rang-
ing from the study of the human brain and epidemics to
differential privacy and social networks (see Section 1).
We believe that the ERGM framework is most useful in
super population scenarios (Section 5.1.2), although it can
be useful in finite population scenarios (Section 5.1.1)
and infinite population scenarios (Section 5.1.3), provided
well-posed ERGMs are used and appropriate statistical
procedures are employed (e.g., likelihood-based proce-
dures). The consistency and asymptotic normality results
for likelihood-based estimators in finite, super and infinite
population scenarios reviewed in Section 7 confirm that
statistical inference for ERGMs is possible, provided the
language of exponential families is used to ask well-posed
questions. It goes without saying that the language can be
abused to ask ill-posed questions by specifying ill-posed
models. But every language can be abused, and potential

for abuse does not invalidate its potential for eloquent and
effective communication when properly employed.

There is no denying that ERGMs are complex mod-
els and give rise to non-trivial computational challenges,
challenges that are shared with other discrete exponential-
family models for dependent random variables, such as
discrete Markov random fields in spatial statistics (Besag,
1974, Cressie, 1993, Stein, 1999) and machine learning
(e.g., Ravikumar, Wainwright and Lafferty, 2010, Yang
et al., 2015). However, there is no such thing as a free
lunch: ERGMs model complex dependence, and mod-
eling complex dependence comes at a price. Stochastic
block models and projective ERGMs are simpler mod-
els and more attractive on computational grounds, but
are not capable of capturing the complex dependencies
encountered in network data. Latent space models do
capture a stochastic tendency towards transitivity (e.g.,
Hoff, Raftery and Handcock, 2002, Handcock, Raftery
and Tantrum, 2007), but there may be more transitivity
in network data than expected under latent space models,
as we found in the human brain network data in Section 8.
In addition, latent space models are not flexible models of
other forms of complex dependence. Last, but not least,
likelihood-based inference for latent space models is like-
wise expensive in terms of computing time, even when ap-
proximate procedures are used (e.g., Raftery et al., 2012,
Salter-Townshend and Murphy, 2013). In the end, all of
these approaches have useful applications and belong to
an ever-growing arsenal of statistical tools to understand
the structure of complex and dependent network data.
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